A. Lomascolo, E. Uzan-boukris, J. Sigoillot, and F. Fine, Rapeseed and sunflower meal: A review on biotechnology status and challenge, Appl. Microbiol. Biotechnol, vol.95, pp.1105-1114, 2012.

, Agricultural Production Statistics by Country-IndexMundi, 2017.

R. Briones, L. Serrano, and J. Labidi, Valorisation of some lignocellulosic agro-industrial residues to obtain biopolyols, J. Chem. Technol. Biotechnol, vol.87, pp.244-249, 2011.

K. H. Yeoman and C. Edwards, Protease production by Streptomyces thermovulgaris grown on rapemeal-derived media, J. Appl. Bacteriol, vol.77, pp.264-270, 1994.

M. I. Rajoka, T. Huma, A. M. Khalid, and F. Latif, Kinetics of enhanced substrate consumption and endo-?-xylanase production by a mutant derivative of Humicola lanuginosa in solid-state fermentation, World J. Microbiol. Biotechnol, vol.21, pp.869-876, 2005.

A. Zabaniotou, O. Ioannidou, and V. Skoulou, Rapeseed residues utilization for energy and 2nd generation biofuels, Fuel, vol.87, pp.1492-1502, 2008.

R. Wang, S. M. Shaarani, L. C. Godoy, M. Melikoglu, C. S. Vergara et al., Bioconversion of rapeseed meal for the production of a generic microbial feedstock, Enzym. Microb. Technol, vol.47, pp.77-83, 2010.

K. Chen, H. Zhang, Y. Miao, P. Wei, and J. Chen, Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes, Enzym. Microb. Technol, vol.48, pp.339-344, 2011.

D. Yao, Z. Ji, C. Wang, G. Qi, L. Zhang et al., Co-producing iturin A and poly-?-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10, World J. Microbiol. Biotechnol, vol.28, pp.985-991, 2012.

S. Vuorela, A. Meyer, and M. Heinonen, Impact of isolation method on the antioxidant activity of rapeseed meal phenolics, J. Agric. Food Chem, vol.52, pp.8202-8207, 2004.

K. L. Morley, S. Grosse, H. Leisch, and P. C. Lau, Antioxidant canolol production from a renewable feedstock via an engineered decarboxylase, Green Chem, vol.15, pp.3312-3317, 2013.

A. Koski, S. Pekkarinen, A. Hopia, K. Wähälä, and M. Heinonen, Processing of rapeseed oil: Effects on sinapic acid derivative content and oxidative stability, Eur. Food Res. Technol, vol.217, pp.110-114, 2003.

D. Wakamatsu, S. Morimura, T. Sawa, K. Kida, C. Nakai et al., Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci. Biotechnol. Biochem, vol.69, pp.1568-1574, 2005.

H. Kuwahara, A. Kanazawa, D. Wakamatu, S. Morimura, K. Kida et al., Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil, J. Agric. Food Chem, vol.52, pp.4380-4387, 2004.

X. Dong, Z. Li, W. Wang, W. Zhang, S. Liu et al., Protective effect of canolol from oxidative stress-induced cell damage in ARPE-19 via an ERK mediated antioxidative pathway, vol.17, pp.2040-2048, 2011.

X. Cao, T. Tsukamoto, T. Seki, H. Tanaka, S. Morimura et al., 4-Vinyl-2,6-dimethoxyphenol (canolol) suppresses oxidative stress and gastric carcinogenesis in Helicobacter pylori-infected carcinogen-treated Mongolian gerbils, Int. J. Cancer, vol.122, pp.1445-1454, 2008.

H. Maeda, J. P. Kumamoto, T. Tsukamoto, M. Tatematsu, and J. P. Nagoya-shi, Anti-Inflammatory Agent and Cancer-Preventive Agent Comprising Canolol or Prodrug Thereof and Pharmaceutical, Cosmetic and Food Comprising the Same, pp.122995-122996, 2012.

C. Aouf, E. Zago, J. Lecomte, P. Villeneuve, H. Fulcrand et al., Polyaromatic Dimers, Method for Preparing Same and Use of Same, 2016.

E. Zago, E. Dubreucq, J. Lecomte, P. Villeneuve, F. Fine et al., Synthesis of bio-based epoxy monomers from natural ally-and vinyl phenols and the estimation of their affinity to the oestrogen receptot ? by molecular docking, New J. Chem, vol.40, pp.7701-7710, 2016.

F. Pudel, V. Habicht, T. Piofczyk, B. Matthäus, K. W. Quirin et al., Fluidized bed treatment of rapeseed meal and cake as possibility for the production of canolol, Oilseeds Fats Crop. Lipids, 2014.

M. Yang, C. Zheng, Q. Zhou, C. Liu, W. Li et al., Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content, J. Agric. Food. Chem, vol.62, pp.1956-1963, 2014.

E. Zago, J. Lecomte, N. Barouh, C. Aouf, P. Carré et al., Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol, Ind. Crop. Prod, vol.76, pp.1061-1070, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269474

J. Li and Z. Guo, Concurrent extraction and transformation of bioactive phenolic compounds from rapeseed meal using pressurized solvent extraction system, Ind. Crop. Prod, vol.94, pp.152-159, 2016.

R. D. Steinke and M. C. Paulson, The production of steam-volatile phenols during the cooking and alcoholic fermentation of grain, J. Agric. Food Chem, vol.12, pp.381-387, 1964.

L. Godoy, C. Martinez, N. Carrasco, and M. A. Ganga, Purification and characterization of p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis, Int. J. Food Microbiol, vol.127, pp.6-11, 2008.

A. Matte, F. Grosse, H. Bergeron, K. Abokitse, and P. C. Lau, Structural analysis of Bacillus pumilus acid decarboxylase, a lipocalin-fold enzyme, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.66, pp.1407-1414, 2010.

H. Huang, M. Tokashiki, S. Maeno, S. Onaga, T. Taira et al., Purification and properties of phenolic acid decarboxylase from Candida guilliermondii, J. Ind. Microbiol. Biotechnol, vol.39, pp.55-62, 2012.

E. Record, M. Asther, C. Sigoillot, S. Pages, P. J. Punt et al., Overproduction of Aspergillus niger feruloyl esterase for pulp bleaching application, Appl. Microbiol. Biotechnol, vol.62, pp.349-355, 2003.

A. Levasseur, I. Benoit, M. Asther, M. Asther, and E. Record, Homologous expression of the feruloyl esterase B gene from Aspergillus niger and characterization of the recombinant enzyme, Protein Expr. Purif, vol.37, pp.126-133, 2004.

I. Benoit, M. Asther, Y. Bourne, D. Navarro, S. Canaan et al., Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger, Appl. Environ. Microbiol, vol.73, pp.5624-5632, 2007.

, National Center for Biotechnology Information. Available online, 2017.

M. Ralet, C. B. Faulds, G. Williamson, and J. Thibaut, Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger, Carbohydr. Res, vol.263, pp.257-269, 1994.

E. Bonnin, M. Brunel, Y. Gouy, L. Lesage-meessen, M. Asther et al., Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases, Enzym. Microb. Technol, vol.28, pp.70-80, 2001.

B. Falconnier, C. Lapierre, L. Lesage-meesen, G. Yonnet, P. Brunerie et al., Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pyncoporus cinnabarinus I-937: Identification of metabolic pathways, J. Biotechnol, vol.37, pp.123-132, 1994.

S. Vuorela, A. Meyer, and M. Heinonen, Quantitative analysis of the main phenolics in rapeseed meal and oils processed differently using enzymatic hydrolysis and HPLC, Eur. Food Res. Technol, vol.217, pp.517-523, 2003.

L. Lesage-meessen, A. Lomascolo, E. Bonnin, J. Thibault, A. Buleon et al., A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran, Appl. Biochem. Biotechnol, pp.141-153, 2002.

C. B. Faulds, What can feruloyl esterases do for us?, Phytochem. Rev, vol.9, pp.121-132, 2010.

C. B. Faulds and G. Williamson, Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger: Specificity for the phenolic moiety and binding to microcrystalline cellulose, Microbiology, vol.140, pp.779-787, 1994.

C. Brezillon, P. A. Kroon, C. B. Faulds, G. M. Brett, and G. Williamson, Novel ferulic acid esterases are induced by growth of Aspergillus niger on sugar beet pulp, Appl. Microbiol. Biotechnol, vol.45, pp.371-376, 1996.

E. Bonnin, L. Lesage-meessen, M. Asther, and J. Thibault, A new process using Aspergillus niger and its enzymes for the production of vanillin and related compounds from agro-industrial by-products, Afinidad LVII, vol.489, pp.357-364, 2000.

H. Shimazono, Investigations on lignins and lignification. Identification of a phenolic ester in the culture medium of Lentinus lepideus and the O-methylation of methyl p-coumarate to methyl p-methoxycinnamate in vivo, Arch. Biochem. Biophys, vol.83, pp.206-215, 1959.

M. Jin, S. Kim, and B. Kim, Induction of B-cell proliferation and NF-B activation by water-soluble glycan from Neolentinus lepideus, Int. J. Immunopharmacol, vol.18, pp.439-448, 1996.

M. Jin, H. Jeon, J. Jung, C. Kim, S. Shin et al., Activation of selective transcription factor and cytokines by a water-soluble exctract from Neolentinus lepideus, Exp. Biol. Med, vol.228, pp.749-758, 2003.

K. N. Yoon, N. Alam, K. R. Lee, P. G. Shin, J. C. Cheong et al., Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus, Molecules, vol.16, pp.2334-2347, 2011.

K. Okamoto, R. Kanawaku, M. Masumoto, and H. Yanase, Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus, Enzym. Microb. Technol, vol.50, pp.96-100, 2012.

U. Krings, S. Pilawa, C. Theobald, and R. G. Berger, Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus-Elucidation of metabolic pathways using [5-2 H]-ferulic acid, J. Biotechnol, vol.85, pp.305-314, 2001.

A. Lomascolo, M. Asther, D. Navarro, C. Antona, M. Delattre et al., Shifting the biotransformation pathways of L-phenylalanine into benzaldehyde by Trametes suaveolens CBS334.85 using HP20 resin, Lett. Appl. Microbiol, vol.32, pp.262-267, 2001.

X. G. Xie, C. Y. Huang, W. Q. Fu, and C. C. Dai, Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid, Fungal Biol, vol.120, pp.402-413, 2016.

Y. P. Xue, Z. Q. Liu, M. Xu, Y. J. Wanga, Y. G. Zhenga et al., Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(?)-mandelic acid with in situ production removal by addition of resin, Biochem. Eng. J, vol.53, pp.143-149, 2010.

P. Wang, J. Y. He, and J. F. Yin, Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin, Bioprocess Biosyst. Eng, vol.38, pp.421-428, 2015.

J. F. Cavin, V. Dartois, and C. Divies, Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis, Appl. Environ. Microbiol, vol.64, pp.1466-1471, 1998.

J. M. Landete, H. Rodríguez, J. A. Curiel, B. De-las-rivas, J. M. Mancheño et al., Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84, J. Ind. Microbiol. Biotechnol, vol.37, pp.617-624, 2012.

H. Hu, L. Li, and S. Ding, An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives, Appl. Microbiol. Biotechnol, vol.99, pp.5071-5081, 2015.