M. E. Himmel, S. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos et al., Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, vol.315, pp.804-811, 2007.

H. Tan, K. R. Corbin, and G. B. Fincher, Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls, Front Plant Sci, vol.7, p.1854, 2016.

P. V. Harris, D. Welner, K. C. Mcfarland, E. Re, N. Poulsen et al., Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family, Biochem (Mosc.), vol.49, pp.3305-3321, 2010.

K. S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-oxygenases, Biochem Soc Trans, vol.44, pp.143-152, 2016.

J. Berrin, M. Rosso, A. Hachem, and M. , Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases, Carbohydr Res, vol.448, pp.155-60, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595055

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnol Biofuels, vol.6, p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268121

G. R. Hemsworth, E. M. Johnston, G. J. Davies, and P. H. Walton, Lytic polysaccharide monooxygenases in biomass conversion, Trends Biotechnol, vol.33, pp.747-61, 2015.

G. R. Hemsworth, G. Déjean, G. J. Davies, and H. Brumer, Learning from microbial strategies for polysaccharide degradation, Biochem Soc Trans, vol.44, pp.94-108, 2016.

G. R. Hemsworth, B. Henrissat, G. J. Davies, and P. H. Walton, Discovery and characterization of a new family of lytic polysaccharide monooxygenases, Nat Chem Biol, vol.10, pp.122-128, 2014.

V. V. Vu, W. T. Beeson, E. A. Span, E. R. Farquhar, and M. A. Marletta, A family of starch-active polysaccharide monooxygenases, Proc Natl Acad Sci USA, vol.111, pp.13822-13829, 2014.

G. R. Hemsworth, G. J. Davies, and P. H. Walton, Recent insights into coppercontaining lytic polysaccharide mono-oxygenases, Curr Opin Struct Biol, vol.23, pp.660-668, 2013.

N. Lenfant, M. Hainaut, N. Terrapon, E. Drula, V. Lombard et al., A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9, Carbohydr Res, vol.448, pp.166-74, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595066

B. Westereng, T. Ishida, G. Vaaje-kolstad, M. Wu, V. Eijsink et al., The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose, PLoS ONE, vol.6, p.27807, 2011.

J. W. Agger, T. Isaksen, A. Várnai, S. Vidal-melgosa, W. Willats et al., Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation, Proc Natl Acad Sci, vol.111, pp.6287-92, 2014.

C. Bennati-granier, S. Garajova, C. Champion, S. Grisel, M. Haon et al., Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnol Biofuels, vol.8, p.90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202474

A. S. Borisova, T. Isaksen, M. Dimarogona, A. A. Kognole, G. Mathiesen et al., Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity, J Biol Chem, vol.290, pp.22955-69, 2015.

M. Fanuel, S. Garajova, D. Ropartz, N. Mcgregor, H. Brumer et al., The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans, Biotechnol Biofuels, vol.10, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01499750

K. Frandsen, T. J. Simmons, P. Dupree, J. Poulsen, G. R. Hemsworth et al., The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases, Nat Chem Biol, vol.12, pp.298-303, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439064

T. Isaksen, B. Westereng, F. L. Aachmann, J. W. Agger, D. Kracher et al., A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides, J Biol Chem, vol.289, pp.2632-2674, 2014.

A. Villares, C. Moreau, C. Bennati-granier, S. Garajova, L. Foucat et al., Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure, Sci Rep, vol.7, p.40262, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595678

R. Riley, A. A. Salamov, D. W. Brown, L. G. Nagy, D. Floudas et al., Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi, Proc Natl Acad Sci, vol.111, pp.9923-9931, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01578657

C. Mariani, R. Briandet, J. Chamba, E. Notz, A. Carnet-pantiez et al., Biofilm ecology of wooden shelves used in ripening the French raw milk smear cheese reblochon de savoie, J Dairy Sci, vol.90, pp.1653-61, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00395415

A. S. Borisova, E. V. Eneyskaya, K. S. Bobrov, J. S. Logachev, A. Polev et al., Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from Geotrichum candidum 3C, FEBS J, vol.282, pp.4515-4552, 2015.

G. Morel, L. Sterck, D. Swennen, M. Marcet-houben, D. Onesime et al., Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts, Sci Rep, vol.5, p.11571, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201920

M. Ahmad, M. Hirz, H. Pichler, and H. Schwab, Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl Microbiol Biotechnol, vol.98, pp.5301-5318, 2014.

R. Daly and M. Hearn, Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production, J Mol Recognit JMR, vol.18, pp.119-157, 2005.

R. Kittl, D. Kracher, D. Burgstaller, D. Haltrich, and R. Ludwig, Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay, Biotechnol Biofuels, vol.5, p.79, 2012.

D. Navarro, M. Rosso, M. Haon, C. Olivé, E. Bonnin et al., Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes, Biotechnol Biofuels, vol.7, p.143, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204406

C. R. Thornton, D. C. Slaughter, and R. M. Davis, Detection of the sour-rot pathogen Geotrichum candidum in tomato fruit and juice by using a highly specific monoclonal antibody-based ELISA, Int J Food Microbiol, vol.143, pp.166-72, 2010.

T. Hasunuma and A. Kondo, Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering, Biotechnol Adv, vol.30, pp.1207-1225, 2012.

G. Guirimand, K. Sasaki, K. Inokuma, T. Bamba, T. Hasunuma et al., Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate, Appl Microbiol Biotechnol, vol.100, pp.3477-87, 2016.

Z. Guo, S. Duquesne, S. Bozonnet, G. Cioci, J. Nicaud et al., Conferring cellulose-degrading ability to Yarrowia lipolytica to facilitate a consolidated bioprocessing approach, Biotechnol Biofuels, vol.10, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01605060

M. Couturier, J. Feliu, M. Haon, D. Navarro, L. Lesage-meessen et al., A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity, Microb Cell Factories, vol.10, p.103, 2011.

S. Gognies, A. Gainvors, M. Aigle, and A. Belarbi, Cloning, sequence analysis and overexpression of a Saccharomyces cerevisiae endopolygalacturonaseencoding gene (PGL1), Yeast Chichester Engl, vol.15, pp.11-22, 1999.

M. Couturier, M. Haon, P. M. Coutinho, B. Henrissat, L. Lesage-meessen et al., Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass, Appl Environ Microbiol, vol.77, pp.237-283, 2011.

T. M. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods enzymol. Elsevier, pp.19-25, 1988.

B. Westereng, J. W. Agger, S. J. Horn, G. Vaaje-kolstad, F. L. Aachmann et al., Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, J Chromatogr A, vol.1271, pp.144-52, 2013.

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiol Plant, vol.89, pp.1-3, 1993.

I. Herpoël-gimbert, A. Margeot, A. Dolla, G. Jan, D. Mollé et al., Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnol Biofuels, vol.1, p.18, 2008.

S. E. Hamby and J. D. Hirst, Prediction of glycosylation sites using random forests, BMC Bioinform, vol.9, p.500, 2008.