M. Aubart, M. Gross, and N. Hanna, The clinical presentation of Marfan syndrome is modulated by expression of wild-type FBN1 allele, Human Molecular Genetics, vol.4, issue.10, pp.2764-2770, 2015.
DOI : 10.1371/journal.pgen.1000006

M. Barbier, M. Gross, and M. Aubart, MFAP5 Loss-of-Function Mutations Underscore the Involvement of Matrix Alteration in the Pathogenesis of Familial Thoracic Aortic Aneurysms and Dissections, The American Journal of Human Genetics, vol.95, issue.6, pp.736-743, 2014.
DOI : 10.1016/j.ajhg.2014.10.018

P. Beighton, A. De-paepe, and D. Danks, International nosology of heritable disorders of connective tissue, Berlin, 1986, American Journal of Medical Genetics, vol.91, issue.3, pp.581-594, 1986.
DOI : 10.7326/0003-4819-93-6-813

A. Biggin, K. Holman, M. Brett, B. Bennetts, and L. Adès, mutations in patients with Marfan syndrome or a related fibrillinopathy, Human Mutation, vol.23, issue.1, p.99, 2004.
DOI : 10.1002/humu.9207

C. Boileau, D. Guo, and N. Hanna, TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome, Nature Genetics, vol.56, issue.8, pp.916-921, 2012.
DOI : 10.1023/B:BILE.0000007075.24434.5e

B. Callewaert, B. Loeys, and A. Ficcadenti, Comprehensive clinical and molecular assessment of 32 probands with congenital contractural arachnodactyly: Report of 14 novel mutations and review of the literature, Human Mutation, vol.279, issue.10 Spec No, pp.334-341, 2009.
DOI : 10.1074/jbc.M402656200

L. Carta, L. Pereira, and E. Arteaga-solis, Fibrillins 1 and 2 Perform Partially Overlapping Functions during Aortic Development, Journal of Biological Chemistry, vol.88, issue.12, pp.8016-8023, 2006.
DOI : 10.1097/00001573-200403000-00007

URL : http://www.jbc.org/content/281/12/8016.full.pdf

N. Charbonneau, E. Carlson, and S. Tufa, Studies of Mutant Fibrillin-1 Microfibrils, Journal of Biological Chemistry, vol.2, issue.32, pp.24943-24955, 2010.
DOI : 10.1101/gr.6.4.300

URL : http://www.jbc.org/content/285/32/24943.full.pdf

G. Collod-béroud, C. Béroud, and L. Adès, Marfan Database (second edition): software and database for the analysis of mutations in the human FBN1 gene, Nucleic Acids Research, vol.62, issue.3, pp.147-150, 1997.
DOI : 10.1002/ajmg.1320290316

J. Cook, S. Smaldone, and C. Cozzolino, Generation of Fbn1 conditional null mice implicates the extracellular microfibrils in osteoprogenitor recruitment, genesis, vol.23, issue.8, pp.635-641, 2012.
DOI : 10.1093/nar/23.24.5080

G. Corson, S. Chalberg, and H. Dietz, Fibrillin Binds Calcium and Is Coded by cDNAs That Reveal a Multidomain Structure and Alternatively Spliced Exons at the 5??? End, Genomics, vol.17, issue.2, pp.476-484, 1993.
DOI : 10.1006/geno.1993.1350

A. De-paepe, R. Devereux, and H. Dietz, Revised diagnostic criteria for the Marfan syndrome, American Journal of Medical Genetics, vol.104, issue.4, pp.417-426, 1996.
DOI : 10.2214/ajr.97.1.118

D. Détaint, L. Faivre, and G. Collod-beroud, Cardiovascular manifestations in men and women carrying a FBN1 mutation, European Heart Journal, vol.32, issue.18, pp.2223-2229, 2010.
DOI : 10.1016/S0735-1097(98)00454-9

H. Dietz, G. Cutting, and R. Pyeritz, Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene, Nature, vol.352, issue.6333, pp.337-339, 1991.
DOI : 10.1038/352337a0

A. Downing, V. Knott, and J. Werner, Solution Structure of a Pair of Calcium-Binding Epidermal Growth Factor-like Domains: Implications for the Marfan Syndrome and Other Genetic Disorders, Cell, vol.85, issue.4, pp.597-605, 1996.
DOI : 10.1016/S0092-8674(00)81259-3

L. Faivre, In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome, Journal of Medical Genetics, vol.40, issue.1, pp.34-36, 2003.
DOI : 10.1136/jmg.40.1.34

URL : https://hal.archives-ouvertes.fr/inserm-00143439

L. Faivre, G. Collod-beroud, and B. Callewaert, Pathogenic FBN1 mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: Further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion, American Journal of Medical Genetics Part A, vol.38, issue.Supp 1, pp.854-860, 2009.
DOI : 10.1097/00125817-200009000-00002

URL : https://hal.archives-ouvertes.fr/inserm-00396232

L. Faivre, G. Collod-beroud, and B. Loeys, Effect of Mutation Type and Location on Clinical Outcome in 1,013 Probands with Marfan Syndrome or Related Phenotypes and FBN1 Mutations: An International Study, The American Journal of Human Genetics, vol.81, issue.3, pp.454-466, 2007.
DOI : 10.1086/520125

URL : https://hal.archives-ouvertes.fr/inserm-00344134

M. Gibson, G. Hatzinikolas, and J. Kumaratilake, Further Characterization of Proteins Associated with Elastic Fiber Microfibrils Including the Molecular Cloning of MAGP-2 (MP25), Journal of Biological Chemistry, vol.11, issue.2, pp.1096-1103, 1996.
DOI : 10.1016/0888-7543(91)90142-2

R. Giltay, R. Timpl, and G. Kostka, Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4, Matrix Biology, vol.18, issue.5, pp.469-480, 1999.
DOI : 10.1016/S0945-053X(99)00038-4

P. Handford, M. Mayhew, and M. Baron, Key residues involved in calcium-binding motifs in EGF-like domains, Nature, vol.351, issue.6322, pp.164-167, 1991.
DOI : 10.1038/351164a0

R. Hennekam, Severe infantile Marfan syndrome versus neonatal Marfan syndrome, American Journal of Medical Genetics Part A, vol.163, issue.1, p.1, 2005.
DOI : 10.1002/ajmg.a.30979

R. Howarth, C. Yearwood, and J. Harvey, Application of dHPLC for Mutation Detection of the Fibrillin-1 Gene for the Diagnosis of Marfan Syndrome in a National Health Service Laboratory, Genetic Testing, vol.11, issue.2, pp.146-152, 2007.
DOI : 10.1089/gte.2006.0514

D. Hubmacher, K. Tiedemann, and D. Reinhardt, Fibrillins: From Biogenesis of Microfibrils to Signaling Functions, Current Topics in Developmental Biology, vol.75, pp.93-123, 2006.
DOI : 10.1016/S0070-2153(06)75004-9

K. Janssens, F. Vanhoenacker, and M. Bonduelle, Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment, Journal of Medical Genetics, vol.43, issue.1, pp.1-11, 2006.
DOI : 10.1136/jmg.2005.033522

A. Jacquinet, A. Verloes, and B. Callewaert, Neonatal progeroid variant of Marfan syndrome with congenital lipodystrophy results from mutations at the 3??? end of FBN1 gene, European Journal of Medical Genetics, vol.57, issue.5, pp.230-234, 2014.
DOI : 10.1016/j.ejmg.2014.02.012

S. Jensen, I. Robertson, and P. Handford, Dissecting the Fibrillin Microfibril: Structural Insights into Organization and Function, Structure, vol.20, issue.2, pp.215-225, 2012.
DOI : 10.1016/j.str.2011.12.008

URL : https://doi.org/10.1016/j.str.2011.12.008

D. Judge, N. Biery, and D. Keene, Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome, Journal of Clinical Investigation, vol.114, issue.2, pp.172-181, 2004.
DOI : 10.1172/JCI200420641

C. Kielty, M. Sherratt, A. Marson, and C. Baldock, Fibrillin Microfibrils, Advances in Protein Chemistry, vol.70, pp.405-436, 2005.
DOI : 10.1016/S0065-3233(05)70012-7

URL : https://hal.archives-ouvertes.fr/hal-00523374

J. Lack, O. Leary, J. Knott, and V. , Solution Structure of the Third TB Domain from LTBP1 Provides Insight into Assembly of the Large Latent Complex that Sequesters Latent TGF-??, Journal of Molecular Biology, vol.334, issue.2, pp.281-291, 2003.
DOI : 10.1016/j.jmb.2003.09.053

L. Goff, C. Mahaut, C. Wang, and L. , Mutations in the TGF? binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias, American Journal of Human Genetics, vol.89, pp.7-14, 2011.

L. Goff, C. Cormier-daire, and V. , From tall to short: the role of TGF? signaling in growth and its disorders, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.160, pp.145-153, 2012.

L. Goff, C. Mahaut, C. Abhyankar, and A. , Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome, Nature Genetics, vol.56, issue.1, pp.85-88, 2012.
DOI : 10.1161/ATVBAHA.109.194548

B. Loeys, J. Chen, and E. Neptune, A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2, Nature Genetics, vol.167, issue.3, pp.275-281, 2005.
DOI : 10.1083/jcb.200403067

B. Loeys, E. Gerber, and D. Riegert-johnson, Mutations in Fibrillin-1 Cause Congenital Scleroderma: Stiff Skin Syndrome, Science Translational Medicine, vol.245, issue.25, pp.23-43, 2010.
DOI : 10.1074/jbc.M809348200

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953713/pdf

B. Loeys, H. Dietz, and A. Braverman, The revised Ghent nosology for the Marfan syndrome, Journal of Medical Genetics, vol.47, issue.7, pp.476-485, 2010.
DOI : 10.1136/jmg.2009.072785

URL : https://hal.archives-ouvertes.fr/hal-00557373

F. Low, Microfibrils: Fine filamentous components of the tissue space, The Anatomical Record, vol.4, issue.2, pp.131-137, 1962.
DOI : 10.1016/0002-9394(54)90008-2

P. Matt, F. Schoenhoff, and J. Habashi, Circulating Transforming Growth Factor-?? in Marfan Syndrome, Circulation, vol.120, issue.6, pp.526-532, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.841981

URL : http://circ.ahajournals.org/content/circulationaha/120/6/526.full.pdf

T. Mccalmont and A. Gilliam, A subcutaneous lattice-like array of thick collagen is a clue to the diagnosis of stiff skin syndrome, Journal of Cutaneous Pathology, vol.28, issue.1, pp.2-4, 2012.
DOI : 10.1016/0190-9622(93)70072-2

V. Mckusick, The Cardiovascular Aspects of Marfan's Syndrome: A Heritable Disorder of Connective Tissue, Circulation, vol.11, issue.3, pp.321-342, 1955.
DOI : 10.1161/01.CIR.11.3.321

T. Mizuguchi, G. Collod-beroud, and T. Akiyama, Heterozygous TGFBR2 mutations in Marfan syndrome, Nature Genetics, vol.55, issue.8, pp.855-860, 2004.
DOI : 10.1038/nrg775

URL : https://hal.archives-ouvertes.fr/inserm-00143367

S. Morris, D. Orbach, and T. Geva, Increased Vertebral Artery Tortuosity Index Is Associated With Adverse Outcomes in Children and Young Adults With Connective Tissue Disorders, Circulation, vol.124, issue.4, pp.388-396, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.990549

R. Ono, G. Sengle, and N. Charbonneau, Latent Transforming Growth Factor ??-binding Proteins and Fibulins Compete for Fibrillin-1 and Exhibit Exquisite Specificities in Binding Sites, Journal of Biological Chemistry, vol.44, issue.25, pp.16872-16881, 2009.
DOI : 10.1038/sj.emboj.7601768

L. Pereira, S. Lee, and B. Gayraud, Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1, Proceedings of the National Academy of Sciences, vol.393, issue.6682, pp.3819-3823, 1999.
DOI : 10.1038/30522

URL : http://www.pnas.org/content/96/7/3819.full.pdf

E. Putnam, H. Zhang, F. Ramirez, and D. Milewicz, Fibrillin???2 (FBN2) mutations result in the Marfan???like disorder, congenital contractural arachnodactyly, Nature Genetics, vol.2, issue.4, pp.456-458, 1995.
DOI : 10.1038/327339a0

F. Quondamatteo, D. Reinhardt, and N. Charbonneau, Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development, Matrix Biology, vol.21, issue.8, pp.637-646, 2002.
DOI : 10.1016/S0945-053X(02)00100-2

F. Ramirez and L. Sakai, Biogenesis and function of fibrillin assemblies, Cell and Tissue Research, vol.129, issue.1, pp.71-82, 2010.
DOI : 10.1172/JCI200422715

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819175/pdf

E. Regalado and D. Milewicz, Molecular Genetics of Aortic Aneurysms and Aortic Dissections, pp.10-1002, 2015.
DOI : 10.1038/ng1721

P. Robinson, Marfan Syndrome, 2006.
DOI : 10.1136/jmg.37.1.9

URL : https://hal.archives-ouvertes.fr/inserm-00143572

L. Sakai, D. Keene, R. Glanville, and H. Bächinger, Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils, Journal of Biological Chemistry, vol.266, pp.14763-14770, 1991.

A. Samadi, D. Detaint, and C. Roy, Surgical management of patients with Marfan syndrome: Evolution throughout the years, Archives of Cardiovascular Diseases, vol.105, issue.2, pp.84-90, 2012.
DOI : 10.1016/j.acvd.2012.01.001

URL : https://hal.archives-ouvertes.fr/hal-01681809

G. Sengle, K. Tsutsui, and D. Keene, Microenvironmental Regulation by Fibrillin-1, PLoS Genetics, vol.22, issue.1, p.1002425, 2012.
DOI : 10.1371/journal.pgen.1002425.s009

URL : https://doi.org/10.1371/journal.pgen.1002425

G. Sengle and L. Sakai, The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation?, Matrix Biology, vol.47, pp.3-12, 2015.
DOI : 10.1016/j.matbio.2015.05.002

H. Sakai, R. Visser, and S. Ikegawa, Comprehensive genetic analysis of relevant four genes in 49 patients with Marfan syndrome or Marfan-related phenotypes, American Journal of Medical Genetics Part A, vol.31, issue.16, pp.1719-1725, 2006.
DOI : 10.1002/ajmg.a.31353

A. Singleton, A. Mitchell, and P. Byers, Bovine model of Marfan syndrome results from an amino acid change (c.3598G>A, p.E1200K) in a calcium-binding epidermal growth factor-like domain of fibrillin-1, Human Mutation, vol.23, issue.4, pp.348-352, 2005.
DOI : 10.1111/j.1439-0442.1994.tb00075.x

L. Siracusa, R. Mcgrath, and Q. Ma, A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation., Genome Research, vol.6, issue.4, pp.300-313, 1996.
DOI : 10.1101/gr.6.4.300

C. Stheneur, L. Faivre, and G. Collod-béroud, Prognosis Factors in Probands With an FBN1 Mutation Diagnosed Before the Age of 1 Year, Pediatric Research, vol.65, issue.3, pp.265-270, 2011.
DOI : 10.1086/302582

URL : https://hal.archives-ouvertes.fr/hal-01670010

I. Van-de-laar, R. Oldenburg, and G. Pals, Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis, Nature Genetics, vol.20, issue.2, pp.121-126, 2011.
DOI : 10.1006/excr.2000.4932

M. Wang, C. Clericuzio, and M. Godfrey, Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2, American Journal of Human Genetics, vol.59, pp.1027-1034, 1996.

E. Gallo, D. Loch, and J. Habashi, Angiotensin II???dependent TGF-?? signaling contributes to Loeys-Dietz syndrome vascular pathogenesis, Journal of Clinical Investigation, vol.124, issue.1, pp.448-460, 2014.
DOI : 10.1172/JCI69666DS1

URL : http://www.jci.org/articles/view/69666/files/pdf

E. Gerber, E. Gallo, and S. Fontana, Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma, Nature, vol.3, issue.7474, pp.126-130, 2013.
DOI : 10.1038/35060120

T. Holm, J. Habashi, and J. Doyle, Noncanonical TGF?? Signaling Contributes to Aortic Aneurysm Progression in Marfan Syndrome Mice, Science, vol.218, issue.1, pp.358-361, 2011.
DOI : 10.1002/path.2516

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/pdf

S. Lee, V. Knott, and J. Jovanovi´cjovanovi´c, Structure of the Integrin Binding Fragment from Fibrillin-1 Gives New Insights into Microfibril Organization, Structure, vol.12, issue.4, pp.717-729, 2004.
DOI : 10.1016/j.str.2004.02.023

URL : https://hal.archives-ouvertes.fr/hal-00264690

G. Lin, K. Tiedemann, and T. Vollbrandt, Homo- and Heterotypic Fibrillin-1 and -2 Interactions Constitute the Basis for the Assembly of Microfibrils, Journal of Biological Chemistry, vol.264, issue.52, pp.50795-50804, 2002.
DOI : 10.1016/S0248-4900(98)80018-X

J. Sechler, H. Rao, and A. Cumiskey, A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly, The Journal of Cell Biology, vol.257, issue.5, pp.1081-1088, 2001.
DOI : 10.3109/15419069609014219

URL : http://jcb.rupress.org/content/jcb/154/5/1081.full.pdf

H. Zhang, W. Hu, and F. Ramirez, Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils, The Journal of Cell Biology, vol.129, issue.4, pp.1165-1176, 1995.
DOI : 10.1083/jcb.129.4.1165