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1. Introduction. Consider the problem of the stability and change dynamics
of collective actions (defined as the current actions of the leader and the follower) in
a hierarchical organization. This is, among others, a crucial point for the dynamics
of organizations in economics and management sciences. At a higher level, there is
a large body of literature about stability and change dynamics, starting in the field
of economics with Schumpeter in [1, 2], and in that of management sciences with
Nelson and Winter in [3], within an evolutionary perspective inspired by the theory
of evolution in biology. These dynamics abound; for example, Leana and Barry [4],
at the organizational level, stated that “. . . organizations and individual employees
increasingly are pursuing change in how work is organized, how it is managed and
in who is carrying it out. At the same time, there are numerous individual, organi-
zational, and societal forces promoting stability in work and employment relations.”
In this article, the authors examine “change and stability and the forces driving in-
dividuals and organizations to pursue both,” considering that “some level of tension
between stability and change is an inevitable part of organizational life. . . ”. Hoping
to solve this very important problem related to the survival and dynamic efficiency
of organizations, the most important step is to embed this problem in a larger one.
We respond to this dynamic collective action problem in the following way: we first
propose a simple model of collective actions in a hierarchical organization. Then,
we use the recent variational rationality approach presented by Soubeyran in [5, 6]
as a required enlarged framework to model and unify a large amount of worthwhile
stability and change dynamics, which end in variational traps.

At the mathematical level, given a nonempty subsetK ofRn and f, h :K×K→R,
two bifunctions satisfying the property f(x, x) = 0, h(x, x) = 0, for all x ∈ K, the

∗Received by the editors July 2, 2014; accepted for publication (in revised form) January 19, 2016;
published electronically March 23, 2016.

http://www.siam.org/journals/siopt/26-1/97558.html
†IME, Universidade Federal de Goiás, Goiânia, GO 74001-970, BR (glaydston@ufg.br).
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present paper considers the following bilevel equilibrium problem (BEP):

(1.1) find x̄ ∈ S(f,K) such that h(x̄, y) ≥ 0, y ∈ S(f,K),

where S(f,K) = {u ∈ K : f(u, z) ≥ 0, z ∈ K}; see Chadli, Chbani, and Riahi [7]
or, more recently, Moudafi [8], Chbani and Riahi [9]. It is worth noting that a more
general formulation has appeared in Muu and Oettli [10], where the authors considered
the constrained region as any closed and convex set.

1.1. The nested Stackelberg BEP formulation. In this traditional formula-
tion, h and f refer to the leader’s (head) and follower’s payoffs, which can have several
different interpretations. In economics, the famous Stackelberg model of a hierarchi-
cal (nested) relation between a leader “h” and a follower “f” is a sequential model of
choice, within a given current period; see [11]. It supposes that, in the first stage of
this period, the leader chooses an individual action yh ∈ Xh and that, in the second
stage, the follower provides a best response yf ∈ Rf (yh) ⊂ Xf . The current collective
action of the leader and the follower is y = (yh, yf ) ∈ X = Xh ×Xf . As a best re-
sponse, the follower chooses an action yf among those maximizing his gain gf (yh, yf )
(minimizing his loss −gf(yh, yf) ), given the individual action yh ∈ Xh chosen first
by the leader, i.e., gf (yh, yf ) ≥ gf (yh, zf) for all zf ∈ Xf . If the leader knows the
best response function of the follower (for example, if he knows the payoff function
of the follower, gf : X → R, which associates with each x = (xh, xf ) the number
gf (xh, xf ) = gf(x)), and if the follower is only able to provide a well-determined, for
example, unique, best response, then, in the first stage, the leader can anticipate the
best response yf ∈ Rf(yh) of the follower, for every action yh he chooses to perform
in the first stage. Then, the leader solves the nested bilevel program,

max
{
gh(yh, yf ) : yf ∈ Rf(yh), yh ∈ Xh

}
,

where

yf ∈ Rf (yh) ⇐⇒ gf (yh, yf) ≥ gf (yh, zf), zf ∈ Xf .

The drawback of this formulation is the possible multiplicity of the follower’s best
response.

There is a close relationship between the Stackelberg model and the point raised
by Dempe and Dutta in [12], namely, “Is bilevel programming a special case of a
mathematical program with complementarity constraints?”

We advocate that the previous problem refers to a special way to solve the inde-
terminacy problem of the leader within the Stackelberg model. More precisely, the
above problem is related to the indeterminacy problem of the leader who only knows
the best response corresponding to the follower x → R(x), where R(x) is the subset
of feasible best responses of the follower in reaction to any possible action “x” per-
formed by the leader. This is the case because the Stackelberg model supposes that
the leader only knows, ex ante, before performing an action, both his optimization
program [12, equation 1.2] and of the follower [12, equation 1.1], parametrized by his
own action x. Hence, if, for some x, the follower optimization program has several
solutions (which belong to R(x), i.e., if R(x) is a subset and not a point), the leader
will have, in the absence of additional information, to select in an ad hoc way the
best response y ∈ R(x). There are different ad hoc ways to select y within R(x):

• the behavioral approach: to choose either the optimistic or the pessimistic
solution;

2



• the computational solution: to replace the subset R(x) of the follower’s best
responses by the KKT first order necessary conditions of the follower op-
timization program, say the KKT subset K(x). This is a way to enlarge
R(x) to enable the selection of a solution from this larger, but much easier to
characterize, set K(x). Then, when, for example, convexity assumptions are
carried out for the follower program, a y in K(x) belongs to R(x) (necessary
conditions are sufficient). Then, if K(x) is reduced to a point, so is R(x), and
the leader has a selection procedure, which is much easier to compute. The
trick is that the leader can impose conditions on K(x) to obtain a unique
best response, from each x.

1.2. The variational BEP formulation. Let us consider the variational ra-
tionality (VR) approach (see [5, 6]), where agents, starting from an initial uncomfort-
able position, prefer to move and to follow an acceptable transition to finally end in a
trap. Then, the variational BEP formulation (see Chadli, Chbani, and Riahi [7] and
Moudafi [8]) refers to the end part x̄ of a VR story, where an acceptable transition
between the starting position and the ends is hidden.

Let us focus the attention on the last period of this transition, before reaching a
trap in the current and final periods. Let x = (xh, xf ) ∈ K and y = (yh, yf) ∈ K
be the past and current collective actions of agents h and f , where agent h carries
out the past and current actions xh and yh. Let gh(x) and gf (x) be the past gains
(to be increased) of agents h and f . Let gh(y) and gf(y) be their current gains.
Then, there is a loss for agent f to change from the past collective action u to the
current collective action z if f(u, z) = gf(u)− gf (z) ≥ 0. If this is true for all z ∈ K,
then u represents an optimal position (as a collective action) for agent f . The subset
S(f,K) = {u ∈ K : f(u, z) ≥ 0, z ∈ K} represents the set of stationary traps of the
follower (optimum, equilibrium, stable position,. . . without inertia in this simple case),
where, being in one of these positions u ∈ S(f,K), the follower prefers to stay there
than to move to any different position z ∈ K. Suppose that, in the first stage of the
current period, as a leader (head) agent h can narrow the choice of collective actions
of the follower f to his subset of stationary traps S(f,K). Then, the leader will be
certain that, whichever stationary trap that the follower will select, the follower will
not try to move again. If the leader chooses, from his point of view, the best follower
stationary trap from among all of them, say x̄ ∈ S(f,K), then, the process will end
in x̄, because, in this situation, f will prefer to stay than to move. Given that the
follower will not move, neither does the leader. This is the end of this VR story.

In this model, the leader h first chooses the set chosen by the follower, namely,
S(f,K), and a position (collective action) x̄ ∈ S(f,K) within this set. Then, the
leader and the follower perform the collective action. This seems to show that the
variational BEP formulation is very different from the Stackelberg nested BEP for-
mulation; however, this is not the case. Let us examine why. A comparison of
Stackelberg’s and Moudafi’s formulations requires us to define the Stackelberg BEP
formulation in terms of collective actions. Let

B =
{
y = (yh, yf), yf ∈ Rf(yh)

}
be the subset of collective actions that defines the best response map of the leader-
follower relationship. Then, the nested Stackelberg BEP formulation is

max
{
gh(y), y ∈ B

}
.

This means that the leader h chooses the best collective action among the subset of
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best response collective actions for the follower. The program

x̄ ∈ argmax
{
gh(y), y ∈ B

}
means that gh(x̄) ≥ gh(y) for all y ∈ B. This shows that, for the leader, there is a loss
h(x̄, y) = gh(x̄) − gh(y) ≥ 0 to move from the collective best response action x̄ ∈ B
to any other best response collective action y ∈ B. On his side, if, in the first stage,
after having first proposed the collective action x̄ = (x̄h, x̄f ) ∈ S(f,K) the leader first
carries out his individual action x̄h, then the follower will be better equipped to give
his best response x̄f ∈ Rf(x̄h). Then, f(x̄, y) = gf(x̄)−gf (y) ≥ 0 for all y = (x̄h, yf ).

Thus, the two formulations, although different, are very similar. The BEP vari-
ational formulation seems to be more interesting for two reasons. First, it escapes
from the best response problem, where, in the case of the multiplicity of best re-
sponses, Rf (yh) ⊂ Xf being a subset, the leader does not know which best response
yf ∈ Rf (yh) the follower will provide. Then, the traditional solution is to choose
an ad hoc selection yf ∈ Rf (yh). Second, the BEP variational formulation is well
adapted to a VR dynamic and behavioral formulation, which allows the hidden ac-
ceptable transition to be made explicit. Although it allows starting from an initial
uncomfortable position, it approaches and reaches the desired end.

In mathematics, the BEP has been widely studied and is a very active field of
research; see, for instance, Ding in [13], Anh, Khanh, and Van in [14], Chen, Wan,
and Cho in [15] and references therein. One of the motivations is that it covers opti-
mization problems and mathematical programs with equilibrium constraints. These
problems were addressed by Luo, Pang, and Ralph in [16] and Migdalas, Pardalos,
and Varbrand in [17]. Bilevel problems were first formalized as optimization problems
in the early 1970s by Bracken and McGill in [18].

Some authors have presented iterative processes to approximate a solution for
bilevel problems. Cabot in [19] has built an hierarchical algorithm capable of min-
imizing several functions over their successive solution sets. Facchinei et al. in [20]
considered centralized and distributed algorithms for the numerical solution of a hemi-
variational inequality where the feasible set is given by the intersection of a closed
convex set with the solution set of a lower-level monotone variational inequality.

Moudafi in [8] adapted to BEP the proximal algorithm generalized by himself to
equilibrium problems in [21]. In his convergence analysis the author used the following
assumption

(1.2) ‖xk+1 − xk‖ = o(εk).

Given the difficulty of verifying this assumption, the author himself has left as an open
problem the “to remove condition (1.2).” As far as we know, Chbani and Riahi in [9]
provide an answer to this question, by replacing assumption (1.2) by the following
geometric property:

(H) :
∞∑
k=1

λkεk

[
f∗
z

(
2p

εk

)
− σS(f,K)

(
2p

εk

)]
<∞, z ∈ S(f,K), p ∈ R(NS(f,K)),

where R(NS(f,K)) denotes the range of NS(f,K)) (see section 6 for the definition of
the other elements involved). This condition has previously appeared, for instance,
in Attouch, Czarnecki, and Peypouquet [22, 23], where the authors have confirmed
its validity in some situations. It is worth highlighting that Van Dinh and Dung Muu
in [24] also studied a penalty method for BEPs, thereby also avoiding (1.2).
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In this paper, under the hypothesis of monotonicity, we present a proximal algo-
rithm with generalized distances for BEPs. One of the reasons for using generalized
distances instead of Euclidean norms is that the calculations and equations can be
greatly simplified by an appropriate choice of a generalized distance that allows us
to explore the geometry of the constraints. It is important to note that the hy-
potheses required for the good definition of our algorithm, namely, the hypotheses of
Theorem 5.5, hold for a double regularization (see Silva and Eckstein [25] for more de-
tails about this regularization), because ∇1d(·, y) is strongly monotone with modulus
μ > 0, which implies assumption (L5) (see section 5.1). Hence, some assumptions that
were required for Bregman distances become superfluous. A broad explanation about
generalized proximal distances is provided by Auslender and Teboulle [26], Burachik
and Dutta [27] and references therein. We point out that our algorithm retrieves and
generalizes the proximal point method for BEPs presented in [8].

The organization of our paper is as follows. In section 2, we present an infor-
mal presentation of the VR approach. In sections 3, 4, and 5 we define equilibrium
bifunctions, proximal distances, and regularized bifunctions and their behavioral in-
terpretations as advantages or losses to change functions, inconveniences to change
functions, and payoffs that are worthwhile to change. In section 6, we consider a
proximal point algorithm with generalized proximal distances to solve BEPs and we
derive a convergence analysis. In the last section we present an application of the stay
and change dynamic of a hierarchical organization as a routinization process which
ends in a routine.

2. An informal presentation of the VR approach.

2.1. The VR approach: An informal presentation. To be able to make a
strict parallel between the mathematical part of the paper and the application of our
work in behavioral sciences, we provide an informal presentation of the main concepts
of the VR approach (see [5, 6]), which gives a common background to a lot of different
stay/stability and change dynamics. This greatly facilitates the connection, in a few
words, between substantial multiple different strands of literature on stay and move
dynamics in behavioral sciences (economics, management sciences, psychology, . . .). It
considers the dynamics {x0, x1, . . . , xk, xk+1, . . . , x∗} ⊂ X of general human behavior,
including a starting point x0, a transition {x1, . . . , xk, xk+1, . . . .}, and some end x∗,
where X can be, depending on the context, a space of actions (doings), or states
(havings and beings). Let k and k+1 be the previous and current periods, x = xk and
y = xk+1 be the previous and current actions or states, and x� y be the current move
from the current action x to a future action y. In the current period k+1, a change is
such that xk+1 �= xk, whereas a stay is xk+1 = xk. Initially, agents are not where they
want to be, i.e., at the desired end x∗ �= x0. This provides them with the motivation
to change, in order to approach and perhaps reach the end. Because they must
overcome a lot of resistance to change (obstacles, difficulties), agents cannot succeed
in reaching the desired end in one step. Thus, they subdivide the difficulties they face
into smaller tasks. They must accept following a transition, defined as a succession
of intermediate positions. This transition must be acceptable, improving sufficiently
(satisficing) in each step, without requiring much current sacrifices, to avoid being
stuck in the middle. The VR approach formalizes what can be an acceptable transition
in terms of worthwhile transitions. For that purpose, it defines, as its central building
block, five concepts: “stay and change,” “worthwhile change,” “marginal worthwhile
stay,” “worthwhile transition,” and “variational trap.”

Informally, the VR structure of an agent functions as follows:
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(1) a worthwhile change is such that the current motivation to change of the
agent is sufficiently higher, more than some given satisficing proportion ξ = ξk+1 > 0
of his current resistance to change, in the current period k + 1;

(2) a worthwhile transition refers to a succession of worthwhile temporary stays
and changes;

(3) a variational trap is such that it represents the end of a worthwhile stay and
change dynamic, feasible and desirable (i.e., an aspiration point, worthwhile to reach
from some or any point of the transition), and stable (not worthwhile to leave, an
equilibrium);

(4) the motivation of the agent to change is the utility of his advantages to
change;

(5) the resistance of the agent to change is the disutility of his inconveniences
to change;

(6) advantages to change, when they are separable, refer to the difference be-
tween the current payoff (profit, pleasure) of moving to a new position and the current
payoff of staying in the previous position. Losses to change can be defined in a similar
way;

(7) disadvantages to change, when they are also separable, represent the differ-
ence between the costs of being able to change and the costs of being able to stay. The
VR definition of costs of being able to change and costs to be able to stay is difficult.
It includes a lot of different situations and merits lengthy discussions in each different
discipline in behavioral sciences. This paper will consider an important specific case;

(8) when, starting from an initial position, a worthwhile transition converges to
a variational trap, it both approaches and ends in this trap.

In this paper, the VR structure of each agent is, (i) linear (motivation to change is
identified as being advantages to change, and resistance to change is identified as being
inconveniences to change), (ii) experience dependent (advantages and inconveniences
to change depend on the past experience e(k)), adaptive (satisficing worthwhile to
change ratio ξk+1 > 0 and sharing rules/weights εk+1 > 0 are chosen, each period),
and separable (advantages and inconveniences refer, respectively, to differences be-
tween payoffs to change and to stay and costs of being able to change and to stay).

2.2. The dual variational BEP formulation. In the context of the VR ap-
proach, the dual formulation of the variational BEP approach considers the two func-
tions f̃ , h̃ : K ×K → R, such that f̃(x, y) = −f(x, y) and h̃(x, y) = −h(x, y), aiming

to find x̄ ∈ S(f̃ , K) such that h̃(x̄, y) ≤ 0 for all y ∈ S(f̃ , K), where S(f̃ , K) =

{u ∈ K : f̃(u, y) ≤ 0, y ∈ K}. As seen before, the dual BEP formulation is static.
It helps to modelize the stability aspect of a leader-follower problem, where agents
start directly from a position where they prefer staying rather than moving (this is
an equilibrium problem). However, using the recent VR approach of human behavior
[5, 6] and the VR core proactive and dynamic concept of advantages to change during
the transition (and not the discouraging and static concept of losses by changing at
the end), the dual formalization better facilitates the modelization of the dynamic
aspects of a leader-follower problem, the transition where, during each period, being
away from an equilibrium, agents achieve a balance between changing or staying, to
end in a final situation in which they both prefer to stay. It allows us to focalize
the attention, not only on the end of the process, but more importantly, and also,
on the transition from the starting point to the end, to know how, starting from an
initial position, agents approach the final equilibrium position. In this VR dynami-
cal context, this dual BEP formulation modelizes a dynamic leader-follower problem
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within a hierarchical organization, where, during each period, the leader manages the
choice of temporary stays and changes, and the follower adapts. For example, the
choice of changing y = (yh, yf ) ∈ K refers to a collective action, where the action yh

of the leader means that “the leader/entrepreneur acquires a new technology, trains
the worker to enable it to be used, sets a wage, and sells the final product produced
by the worker,” and the action yf of the follower means that “the follower/worker
uses this technology to produce the final good.” In contrast, the choice of staying
x = (xh, xf ) ∈ K would entail “to continue to use the old technology in the same
way, setting the same wage, and selling the final product in the same way.” Let
f̃(x, y) ≥ 0 and h̃(x, y) be the advantages of the follower and the leader to change

from the old position x to the new position y. The subset S(f̃ , K) defines the dif-

ferent equilibrium positions u ∈ K of the follower, where the advantages f̃(u, y) ≤ 0
to change from u to any other position y ∈ K are nonpositive. Then, the dual BEP
maintains that the leader chooses, among the subset S(f̃ , K) of different equilibria

of the follower, a follower equilibrium x̄ ∈ S(f̃ , K), where, being there, he prefers to

stay rather than to move to another follower equilibrium y ∈ S(f̃ , K), because his

advantages to change h̃(x̄, y) ≤ 0, for all y ∈ S(f̃ , K) are nonpositive.

2.3. From behavioral sciences notation to mathematics. Hereinafter, as-
suming that f and h are given as in the introduction to this paper, the advantages
for the leader and the follower to change are given by: f̃(x, y) = −f(x, y) ≥ 0 and

h̃(x, y) = −h(x, y) ≥ 0, whereas their losses to change are f(x, y) ≥ 0 and h(x, y) ≥ 0
when they are nonnegative. The weighted advantages to change for the organization
and its weighted losses to change are, respectively, given by

Ae(x, y) := − [εf(x, y) + h(x, y)] , Fe(x, y) := εf(x, y) + h(x, y).

We consider a structure representing a simple and linear motivation and resistance
to change. In this case the utility of advantages to change and the disutility of
inconveniences to change are identical to advantages and inconveniences to change,
Ue[Ae(x, y)] = Ae(x, y) and De[Ie(x, y)] = Ie(x, y). Then, the worthwhile to change
payoff of the organization is Δe,λ(x, y) = Ae(x, y) − λIe(x, y) = −Le,λ(x, y), where
Le,λ(x, y) = Fe(x, y) + λIe(x, y).

3. A simple model of a hierarchical organization. In this short section, we
provide, using the VR approach, a simple hierarchical model of an organization where
equilibrium bifunctions represent advantages and losses to change. The collective
action of the hierarchical firm is x = (xh, xf ) ∈ K ⊂ X, where xh means that the
entrepreneur/leader acquires a technology (defined as a bundle of means and a way
to use them), trains the worker to enable this technology to be used in the given
way, and sets a wage, whereas xf means that the worker/follower works, i.e., uses
this technology. The leader first chooses and then performs the action xh. Then, the
follower uses the technology by doing xf ∈ K(xh) if only if (xh, xf ) ∈ K. Let us
define the revenue function r : X → R+, the wage function w : X → R+, and the
profit function of the entrepreneur π : X → R, given by π(x) = r(x) − w(x) − ρ(xh),
where ρ(xh) ≥ 0 is the costs of acquisition of technology and the costs of training the
worker to enable him to use it. The worker payoff is ω(x) = w(x)− δ(xf ) ≥ 0, where
δ(xf ) ≥ 0 is the disutility of working xf . When this is the case, the advantages to

change from position x to position y are, for the leader and the follower, h̃(x, y) =

π(y)−π(x) ≥ 0 and f̃(x, y) = ω(y)−ω(x) ≥ 0. This means that neither the profit nor
the wage do not decrease, π(y) ≥ π(x) and ω(y) ≥ ω(x). When this is the case, the
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losses of changing from position x to position y are, for the leader and the follower,
h(x, y) = π(x) − π(y) ≥ 0 and f(x, y) = ω(x) − ω(y) ≥ 0. Neither the profit nor the
wage do not increase. In this case, the advantages to change functions are separable.
Then, the BEP is simplified to find x̄ ∈ K such that, h̃(x̄, y) = π(y) − π(x̄) ≤ 0

for all y ∈ S(f̃ , K), i.e., such that f̃(y, z) = ω(z)− ω(y) ≤ 0 for all z, y ∈ K. This is
equivalent to find x̄ ∈ K such that π(x̄) ≥ π(y) for all y ∈ K such that ω(y) ≥ ω(z)
for all z ∈ K.

4. Proximal distances and inconveniences to change.

4.1. Proximal distances. Next, we recall some definitions and results associ-
ated with the proximal and induced proximal distances that are useful in the remain-
der of the paper and were explained in [26, 27].

Definition 4.1. A function d : Rn × R
n → R+ ∪ {∞} is known as a proximal

distance with respect to a closed, nonempty, and convex set S ⊂ R
n iff, for every fixed

y ∈ intS, the following properties hold:
(i) d(·, y) is a proper, lsc convex function and C1 on intS;
(ii) dom d(·, y) ⊂ S, and dom ∂1d(·, y) = intS, where ∂1d(·, y) denotes the classi-

cal subgradient map of the function d(·, y) with respect to the first variable.

Henceforth, we assume that S ⊂ R
n is a closed, nonempty, and convex set. The

family of functions satisfying this definition is denoted by D(S).
The next step is to associate each given d ∈ D(S) with a corresponding proximal

distance satisfying some desirable properties.

Definition 4.2. Given d ∈ D(S). Let D : Rn × R
n → R+ ∪ {∞} be a function

such that intS × intS ⊆ domD. Then, D is referred to as the induced proximal
distance to d iff the following properties hold:

(H1) for every x ∈ intS, D(x, ·) is continuous on intS;
(H2) D(x, x) = 0 for all x ∈ intS;
(H3) for all x ∈ S and α ∈ R, the set {y ∈ intS : D(x, y) ≤ α} is bounded;
(H4) for every x, y ∈ intS, it holds that

〈z − x,∇1d(x, y)〉 ≤ D(z, y)−D(z, x)− γD(x, y)

for all z ∈ S and some fixed γ > 0;
(H5) if {yk} ⊂ intS and yk → y ∈ S, then D(y, yk) → 0;
(H6) let z ∈ S and y ∈ intS, and take w := αz + (1− α)y with α ∈ (0, 1). Then,

D(z, w) +D(w, y) ≤ D(z, y);

(H7) if {xk}, {yk} ⊂ intS are sequences such that {xk} converges to x and {yk}
converges to y, with x �= y, then lim inf

k
D(xk, yk) > 0.

Remark 4.1. Properties (H1), (H2), (H3), (H5), and (H7) on generalized dis-
tances refer to more technical assumptions. Properties (H4) and (H6) are related
to a weak form of the triangular inequality. The triangular inequality is a standard
assumption in the VR approach; see [5, 6], for a strong justification.

For examples (Bregman distance, a double regularization, or a second order ho-
mogeneous proximal distance) and a thorough discussion relative to proximal and
induced proximal distances see, for instance, [26, 27].
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We denote by F(S) the set of pairs (d,D) of generalized proximal and induced
proximal distances that satisfy the conditions of Definition 4.2, and we say that (d,D)
is a proximal pair associated with S.

As an illustrative example, we present one way to determine, for a particular
choice of K, what are the set S and (d,D) ∈ F(S).

Example 4.1. Consider the set K = {x ∈ R
n : gj(x) ≤ 0, j = 1, . . . ,m}, where

gj : Rn → R is a convex function for j = 1, . . . ,m. Given α > 0, define g̃j(x) =
gj(x)− α, j = 1, . . . ,m. In this case, take

S = {x ∈ R
n : −g̃j(x) > 0, j = 1, . . . ,m}.

Clearly, K ⊂ int S = S. We note that, for this choice of S, Auslender and Teboulle
in [26] defined the proper, lsc, and convex function

ϕ(x) =

{ ∑m
j=1 − log(−g̃j(x)) if x ∈ int S,

∞ otherwise

from which the authors considered the following Bregman proximal distance associ-
ated with ϕν(x) := ϕ(x) + ν

2‖x‖2, ν > 0:

Dϕν (x, y) =

m∑
j=1

(
− log

g̃j(x)

g̃j(y)
+

〈∇g̃j(y), x− y〉
g̃j(y)

)
+
ν

2
‖x− y‖2.

In this case, for our choice of S associated with the given set K and defining d(x, y) =
D(x, y) := Dϕν (x, y), one has (d,D) ∈ F(S); see Burachik and Dutta [27].

Remark 4.2. Note that, from property (H4) it follows that ∇1d(x, x) = 0.

Before presenting the method, we recall two important facts regarding general-
ized proximal distances verifying (H6) and (H7). The proofs of the following two
propositions can be found in [27].

Proposition 4.3. Assume that (d,D) verifies (H6) and (H7). If {xk} ⊂ S and
{yk} ⊂ intS are sequences such that

lim
k→∞

D(xk, yk) = 0,

and one of the sequences ({xk} or {yk}) converges, then the other also converges to
the same limit.

Proposition 4.4. Assume that (d,D) verifies (H6) and (H7). If {xk} ⊂ S and
{yk} ⊂ intS are sequences such that

lim
k→∞

D(xk, yk) = 0,

and that one of the sequences ({xk} or {yk}) is bounded, then, the following hold:
(a) The other sequence is also bounded.
(b) limk→∞ (xk − yk) = 0.

9



4.2. Inconveniences to change. Let e = ek ∈ E be the past experience of the
agent in the current period k + 1. In this work it refers to the previous collective
action ek = xk. The VR rationality approach [5, 6] defines the inconveniences to
change Ie(x, y) = Ce(x, y)−Ce(x, x) ≥ 0 as the difference between the costs of being
able to change Ce(x, y) ≥ 0 and the costs of being able to stay Ce(x, x) ≥ 0. In this
paper, the costs of being able to change from the current collective action x = xk+1

to the future collective action y, given the experience e = xk of the agents, are given
by

(4.1) Ce(x, y) = 〈ce(x), y − x〉+ Ce(x, x),

where Ce(x, x) is the costs of being able to stay, i.e., the costs of being able to repeat
the same collective action x and 〈ce(x), y − x〉 is the marginal costs of being able to
change, i.e., the costs of being able to change the current collective action from x to
y − x. Note that, from (4.1), the inconvenience to change simplifies to

Ie(x, y) = 〈ce(x), y − x〉.
Given the generalized distance d(xk, x) from the old collective action xk to the current
one x = xk+1, the marginal cost of being able to change are ck(x) = ∇d2(xk, x). We
have reversed the mathematical notation from ∇d1(x, xk) to ∇d2(xk, x) to emphasize
that the move is from xk to x = xk+1. Generalized distances are not symmetric, as
required for costs of being able to change. These distances have regularity properties
that are natural for the cost of being able to change. Furthermore, the costs of being
able to stay Ce(x, x) ≥ 0 usually do not equal zero.

5. Reguralized bifunctions as worthwhile to change payoffs.

5.1. The standard assumptions for equilibrium bifunctions. Mathemati-
cians usually prefer to consider costs (losses, pains) to be of a decreasing nature, to
which they apply minimization problems borrowed from physics, whereas, in behav-
ioral sciences, researchers very often consider payoffs to involve an increase (profit,
pleasure) and see them as maximization problems. Hereafter, we assume that K ⊂ R

n

is a closed, nonempty, and convex set. To avoid losing the interest of the mathemati-
cally oriented reader, in the mathematical part of the paper we consider bifunctions
ψ : K × K → R, which refer to losses. Given x, y ∈ K, our basic assumptions
associated with these bifunctions ψ are the following:

(L1) ψ(x, x) = 0;
(L2) ψ(·, y) : K −→ R is upper semicontinuous;
(L3) ψ(x, ·) : K −→ R is convex and lsc.

In addition to the previous assumptions, we require that ψ be monotone, i.e.,
(L4) ψ(x, y) + ψ(y, x) ≤ 0;
(L5) for any sequence {yk} ⊂ K with limk→∞ ‖yk‖ = ∞, there exist u ∈ K and

k0 ∈ N such that
ψ(yk, u) ≤ 0, k ≥ k0.

Remark 5.1. As far as we know, assumption (L5) was first considered by Iusem,
Kassay, and Sosa in [28]. It is important to highlight that Muu and Oettli in [10]
and Blum and Oettli in [29] used a condition which is sufficient for (L5), in order to
establish existence results for the equilibrium problem.

Theorem 5.1. Assume that ψ satisfies (L1)–(L3) and K is a compact set. Then,
S(ψ,K) is nonempty.
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Proof. The proof is presented by Fan in [30].

Theorem 5.2. Assume that ψ satisfies (L1)–(L5). Then, S(ψ,K) is nonempty.

Proof. The proof is presented by Iusem, Kassay, and Sosa in [28, Thm. 4.3].

5.2. Regularized bifunctions via generalized proximal distances. Let
f, h : K × K −→ R be such that assumptions (L1)–(L3) hold. Take a generalized
proximal distance d with respect to S such that K ⊂ intS. Fix x̄ ∈ K, λ, ε > 0 and
consider the bifunction f̄ : K ×K → R defined by

(5.1) f̄(x, y) = g(x, y) +
1

λ
〈∇1d(x, x̄), y − x〉,

where g := εf + h and ∇1d(x, x̄) denotes the gradient of d(., x̄) at x. We denote by
S(f̄ , K) the solution set of the equilibrium problem associated with f̄ .

Assumption 5.1. For every sequence {yk} ⊂ K such that limk→∞ ‖yk‖ = ∞,

lim inf
k→∞

[
g(x̄, yk) +

1

λ
〈∇1d(y

k, x̄), yk − x̄〉
]
> 0.

It is worth pointing out that the last assumption appeared in Burachik and Kas-
say [31], where a similar proof for the next lemma can be found.

Lemma 5.3. Suppose that f, h satisfy (L1)–(L4). Then, f̄ satisfies (L1)–(L4).
Moreover, if Assumption 5.1 holds, then f̄ satisfies (L5).

Proof. It is clear that f̄ satisfies (L1). Because the map

y �→ 〈∇1d(x, x̄), y − x〉

is convex and continuous, and x �→ 〈∇1d(x, x̄), y − x〉 is continuous at x ∈ K, it
follows that f̄ satisfies (L2)–(L3). We now claim that f̄ satisfies (L4). Indeed, from
the monotonicity of g and ∇1d(·, x̄), we obtain

f̄(x, y) + f̄(y, x) = g(x, y) + g(y, x)− 1

λ
〈∇1d(y, x̄)−∇1d(x, x̄), y − x〉 ≤ 0.

Now, we show that f̄ satisfies (L5). From (L4) and (5.1), we have

f̄(yk, x̄) ≤ −
[
g(x̄, yk) +

1

λ
〈∇1d(y

k, x̄), yk − x̄〉
]
, k = 0, 1, . . . ,

and the desired result follows from Assumption 5.1.

Corollary 5.4. If f, h satisfy (L1)–(L4) and any of the following two conditions
hold,

(i) K is bounded,
(ii) d is 1-coercive, i.e.,

lim
‖x‖→∞

d(x, x̄)

‖x‖ = ∞,

then, f̄ satisfies (L5).
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Proof. If K is bounded, then Assumption 5.1 is verified and, from Lemma 5.3,
condition (i) implies (L5). Let us suppose now that (ii) holds and note that
dom∂g(x̄, ·) ∩ K �= ∅ (see [31, Corollary 3.1] for a detailed proof of this fact). Take
v ∈ ∂g(x̄, x̃), for some x̃ ∈ K, and a sequence {yk} ⊂ K such that ‖yk‖ → ∞. Since
g(x̄, ·) is convex (this follows from (L3)), using that v ∈ ∂g(x̄, x̃), we have

(5.2) g(x̄, yk) ≥ g(x̄, x̃) + 〈v, yk − x̃〉 ≥ g(x̄, x̃)− ‖v‖‖yk − x̃‖, k = 0, 1, . . . ,

where the last inequality follows from the Cauchy–Schwarz inequality. On the other
hand, because d(·, x̄) is convex, we obtain

d(x̄, x̄) ≥ d(yk, x̃) + 〈∇1d(·, x̄), x̄− yk〉, k = 0, 1, . . . .

The last inequality combined with (5.2) yields

g(x̄, yk)+
1

λ
〈∇1d(y

k, x̄), yk− x̄〉 ≥ g(x̄, x̃)+‖yk− x̃‖
(
−‖v‖+ d(yk, x̃)

‖yk − x̃‖ − d(x̄, x̄)

‖yk − x̃‖
)

for k = 0, 1, . . . . Therefore, letting k go to infinity in the last inequality and using
that d(·, x̄) is 1-coercive, we obtain that Assumption 5.1 holds and the desired result
follows again from Lemma 5.3.

Remark 5.2.
(i) If ∇1d(·, x̄) is strongly monotone with modulus μ > 0, i.e.,

〈∇1d(y, x̄)−∇1d(x, x̄), y − x〉 ≥ μ‖y − x‖2, x, y ∈ K,

it follows that, in particular, d(·, x̄) is 1-coercive. Hence, the last corollary
tells us that ∇1d(·, x̄) being strongly monotone is also a sufficient condition
to hold (L5).

(ii) By choosing distance functions d such that, for each x̄, the operator ∇1d(·, x̄)
is strictly monotone (but not necessarily strongly monotone), our analysis
includes, for example, d(x, y) = x ln(x/y) + y − x (the entropic Bregman
distance). Statisticians know it as the Kullback–Leibler information diver-
gence and it corresponds to the barrier ϕ(t) = t ln t− t+ 1; see, for instance,
[32, 33, 34, 35] and references therein.

(iii) In the previous results we presented some sufficient conditions for (L5) to
hold. We note that, even for the problem of a single level, namely, when
f ≡ 0, there exist situations where this condition is required to ensure the
existence of a solution of the penalized problem. Indeed, to illustrate this
fact, let us consider the following situation: let h : K ×K → R be given by
h(x, y) = x− y, with K = [1/2,∞[, and choose d(x, y) := (x/y)− ln(x/y)− 1
(Bregman distance induced by ϕ(t) := t − ln t + 1). It is easy to see that
∇1d(x, x̄) = (1/x̄)− (1/x) is strictly monotone, but is not strongly monotone
or, more generally, d is not 1-coercive. Moreover, h satisfies (L1)–(L4). We
claim that, for x̄ = 2 and λ = 3, the penalized problem does not have a
solution. To see this, note that for any x ∈ K, there is y ∈ K such that

f̄(x, y) = (x− y) +
1

3

(
1

2
− 1

x

)
(y − x) = − (y − x)

3

(
5

2
+

1

x

)
< 0.

The next result establishes the existence and uniqueness of the solution to the
equilibrium problem associated with f̄ . The proof is similar to that presented in [31,
Corollary 3.2].
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Theorem 5.5. Under the assumptions of Lemma 5.3, S(f̄ , K) is a nonempty set.
Moreover, if ∇1d(·, x̄) is strictly monotone, then S(f̄ , K) has a unique element.

Proof. From the assumptions, Lemma 5.3 implies that f̄ satisfies (L1)–(L5) and,
in this case, S(f̄ , K) �= ∅, see [28, Theorem 4.3]. Now, assume that ∇1d(·, x̄) is
strictly monotone and take x1, x2 ∈ S(f̄ , K). As f̄ satisfies (L4), we have f̄(x1, x2) =
f̄(x2, x1) = 0 and, using (5.1) with x = x1, y = x2, we obtain

0 = f̄(x1, x2) = g(x1, x2) +
1

λ
〈∇1d(x1, x̄), x2 − x1〉

and

0 = f̄(x2, x1) = g(x2, x1) +
1

λ
〈∇1d(x2, x̄), x1 − x2〉.

Adding the last two inequalities, we obtain

0 = g(x1, x2) + g(x2, x1)− 1

λ
〈∇1d(x1, x̄)−∇1d(x2, x̄), x1 − x2〉,

and the result follows by using the fact that g satisfies (L4).

5.3. The worthwhile to change payoff of the organization. Let e = x̄ = xk

be the current experience of the organization, which is identified by the previous col-
lective action xk. Let xk+1 be the current collective action and y = xk+2 be the
future collective action. The organizational advantage to change of the organization
is Ae,ε(x, y) = εf̃(x, y) + h̃(x, y), where ε = εk+1 > 0 is a sharing rule, which allows

aggregation of advantages to change h̃(x, y) of the leader/entrepreneur and advan-

tages to change f̃(x, y) of the follower/worker. The inconveniences to change of the
organization are le(x, y) = Ce(x, y). Then, the worthwhile to change payoff of the
organization is Δe,ε,ξ(x, y) = Ae,ε(x, y)−ξle(x, y). The opposite is the not worthwhile
to change payoff

Λe,ε,ξ(x, y) = −Ae,ε(x, y) + ξle(x, y) = Le,ε(x, y) + ξle(x, y),

where Le,ε(x, y) = −Ae,ε(x, y) = εf(x, y) + h(x, y) is the loss to change function of
the organization, i.e., the regularized bifunction

(5.3) Le,ε(x, y) = f̄(x, y) = εf(x, y) + h(x, y) +
1

λ
〈∇1d(x, x̄), y − x〉.

In the current period k+1, these payoffs are, if e = xk, ξk+1 = 1/λk+1, x = xk+1,
and y = xk+2,

Δek,εk+1,ξK+1(x, y) = Aek,εk+1
(x, y)− ξk+1lek(x, y)

= εk+1f̃(x, y) + h̃(x, y) +
1

λk+1
〈∇1d(x, x

k), y − x〉

and

Λek,εk+1,ξK+1(x, y) = fk(x, y) = εk+1f(x, y) + h(x, y) +
1

λk+1
〈∇1d(x, x

k), y − x〉.

The mathematical formulation uses εk and ξk instead of εk+1 and ξk+1, which
refer, in the behavioral context, to decisions in the current period k + 1.
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6. Generalized proximal distance as regularization method for solving
BEPs. Henceforth, unless otherwise specified, we assume that ∇1d(·, x̄) is strictly
monotone, K ⊂ int(dom d(·, y)) for all y ∈ intS, and that all the assumptions of
Lemma 5.3 (noting that Assumption 5.1 is also part of the set of assumptions) happen.

6.1. Proximal point algorithm. In this section, following some ideas pre-
sented by Attouch, Czarnecki, and Peypouquet in [22] and Chbani and Riahi in [9],
we present an approach of the proximal point algorithm with generalized distances
for BEPs, where the convergence result is obtained for monotone bifunctions.

We show the existence and unicity of a solution of the regularized problem (5.1)
(see Theorem 5.5) by constructing the following algorithm for solving the bilevel
problem (1.1).

Algorithm 1. Take two sequences of positive real numbers {εk} and {λk} such
that limk→∞ εk = ∞, lim infk→∞ λk > 0 and consider the bifunction

(6.1) fk(x, y) = εkf(x, y) + h(x, y) +
1

λk
〈∇1d(x, x

k), y − x〉, x, y ∈ K.

Initialization. Choose an initial point x0 ∈ K.
Iterative step. Given xk, take as the next iterate xk+1 ∈ K such that

(6.2) xk+1 ∈ S(fk,K).

Stopping criterion. If xk+1 = xk and xk ∈ S(f,K), STOP.

Remark 6.1.
(a) When f ≡ 0 and d is a Bregman proximal distance in (6.1), we retrieve the

algorithm presented in [31] in a finite dimensional space.
(b) If {xk} terminates after a finite number of iterations, then it terminates at

a solution of (1.1). Indeed, take k such that xk+1 = xk and xk ∈ S(f,K).
Note ∇1d(x

k+1, xk) = 0. Moreover, as f satisfies (L4), it is easy to see that
f(xk+1, y) = 0 for any y ∈ S(f,K). Therefore, the claim follows from the
definitions of xk+1 and fk.

(c) Notice that if f ≡ 0 in (6.1) it is sufficient to require, as a stopping criterion
for Algorithm 1, that xk+1 = xk.

(d) In terms of the VR approach, condition (6.2) is equivalent for each current
period k + 1, to the existence of the weak variational trap xk+1. Indeed,
combining the definition of fk in (6.1) with the definition of S(fk,K) and
using (5.3) with e = ek, ε = εk, λ = λk, we obtain xk+1 ∈ S(fk,K) if only if

−fk(x, y) = Aek,εk(x, y)− ξk+1Iek(x, y) = Δek,εk,ξk+1
(x, y) ≤ 0,

where ξk+1 = 1/λk. Then, it is not worthwhile to change from the current
position x = xk+1 to any position y ∈ K iff

Δek,εk,ξk+1
(x, y) ≤ 0, y ∈ K.

This last condition defines a weak variational trap x = xk+1 in the current
period k + 1.

Next, we introduce a technical result on the nonnegative sequences of real numbers
that is required in the subsequence analysis.
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Lemma 6.1. Let (ξk) and (γk) be nonnegative sequences of real numbers satisfying
(a) ξk+1 ≤ ξk + γk,
(b)

∑∞
k=0 γk <∞.

Then, the sequence {ξk} converges.

Proof. The proof is presented by Polyak in [36, Lemma 9, p. 49].

In the sequel, given a closed, nonempty, and convex set Ω ⊂ R
n, we denote by δΩ,

NΩ, and σΩ, respectively, the indicator function, the normal cone, and the support
function associated with Ω. Recall that

δΩ(x) :=

{
0 if x ∈ Ω,
∞ if x /∈ Ω,

NΩ(x) :=

{{q ∈ R
n : 〈q, y − x〉 ≤ 0, y ∈ Ω} if x ∈ Ω,

∅ if x /∈ Ω,

and σΩ(x) = supy∈Ω〈x, y〉, δ∗Ω = σΩ (elements which are presented by Rockafellar
in [37, Theorem 13.2, p. 114]), ∂δΩ(x) = NΩ(x), and y ∈ NΩ(x) if and only if
σΩ(y) = 〈y, x〉, where δ∗Ω denotes the conjugate function of δΩ.

Let us define the functions fz(y) = f(z, y) and hz(y) = h(z, y), for all y ∈ K.

Lemma 6.2. Take z ∈ S(f,K), w ∈ ∂(hz + δS(f,K))(z), and p ∈ NS(f,K)(z) such
that w − p ∈ ∂hz(z). Then,

D(z, xk+1) +
λkεk
2

f(z, xk+1) ≤ D(z, xk)− γD(xk+1, xk) + λk〈w, z − xk+1〉

+
λkεk
2

[
f∗
z

(
2p

εk

)
− σS(f,K)

(
2p

εk

)]
.(6.3)

Proof. From (6.1), (H4), and the monotonicity of f and h, we have

D(z, xk+1) +
1

2
λkεkf(z, x

k+1)

≤ D(z, xk)− 1

2
λkεkf(z, x

k+1)− λkh(z, x
k+1)− γD(xk+1, xk).

Because w − p ∈ ∂hz(z), it follows that h(z, x
k+1) ≥ 〈w − p, xk+1 − z〉. Hence,

D(z, xk+1) +
1

2
λkεkf(z, x

k+1) ≤ D(z, xk)− 1

2
λkεkf(z, x

k+1)

+ λk〈w − p, z − xk+1〉 − γD(xk+1, xk).

Rewriting the last inequality, we obtain

D(z, xk+1) +
λkεk
2

f(z, xk+1)

≤ D(z, xk)− γD(xk+1, xk) + λk
〈
w, z − xk+1

〉
+
λkεk
2

[〈
2p

εk
, xk+1

〉
− f(z, xk+1)−

〈
2p

εk
, z

〉
− δS(f,K)(z)

]
.

Since z ∈ S(f,K), δS(f,K)(z) = 0. Moreover, we have

(i) 2p
εk

∈ ∂δS(f,K)(z) = NS(f,K)(z), so δ
∗
S(f,K)(

2p
εk
) = σS(f,K)(

2p
εk
);

(ii) 〈2pεk , xk+1〉 − fz(x
k+1) ≤ f∗

z (
2p
εk
).
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Therefore, the desired result follows by combining (i) and (ii) with the last inequa-
lity.

Theorem 6.3. Assume that S(h, S(f,K)) �= ∅. For all x0 ∈ K, we have the
following:

(i) The sequence {xk} generated by Algorithm 1 is well defined.
(ii) For all z ∈ S(h, S(f,K)),

(6.4) D(z, xk+1) ≤ D(z, xk) +
1

2
λkεk

[
f∗
z

(
2p

εk

)
− σS(f,K)

(
2p

εk

)]
.

(iii) If (H) holds, then for all z ∈ S(h, S(f,K))
(a) limk→∞D(z, xk) exists;
(b) the sequence {xk} is bounded;
(c) limk→∞D(xk+1, xk) = 0 and limk→∞(xk+1 − xk) = 0;
(d)

∑∞
k=1 εkf(z, x

k+1) <∞.

Proof. Item (i) follows from Theorem 5.5. For item (ii), take an arbitrary z ∈
S(h, S(f,K)), i.e., h(z, y) ≥ 0 for all y ∈ S(f,K). Hence,

z ∈ argminy∈S(f,K)hz(y) ⇐⇒ 0 ∈ ∂(hz + δS(f,K))(z).

Taking into account that z ∈ S(f,K), −γD(xk+1, xk) ≤ 0 and letting w = 0 in (6.3),
item (ii) follows. As assumption (H) holds, by Lemma 6.1 limk→∞D(z, xk) exists. In
particular, {D(z, xk) : k ∈ N} is a bounded set and, from property (H3), we conclude
that the sequence {xk} is also bounded. This proves items (a) and (b). Given that
z ∈ S(f,K) and letting w = 0 in (6.3), we have

γD(xk+1, xk) ≤ −D(z, xk+1) +D(z, xk) +
1

2
λkεk

[
f∗
z

(
2p

εk

)
− σS(f,K)

(
2p

εk

)]
.

Thus, limk→∞D(xk+1, xk) = 0 follows from assumption (H) together with item (a),
and the completion of the proof of item (c) is obtained from Proposition 4.4. Using
again w = 0 in (6.3), since lim infk→∞ λk > 0, there exists θ > 0 such that

θεkf(z, x
k+1) ≤ D(z, xk)−D(z, xk+1) +

1

2
λkεk

[
f∗
z

(
2p

εk

)
− σS(f,K)

(
2p

εk

)]
.

Finally, item (d) follows by combining item (a) and assumption (H).

Lemma 6.4. Assume (H) holds, S(h, S(f,K)) �= ∅, and let {xk} be the sequence
generated by Algorithm 1. If limj→∞ xkj = x∗, then

(a) limj→∞ xkj+1 = x∗,
(b) x∗ ∈ S(f,K),
(c) x∗ ∈ S(h, S(f,K)).

Proof. From the triangular inequality, we have

‖xkj+1 − x∗‖ ≤ ‖xkj+1 − xkj‖+ ‖xkj − x∗‖, j = 0, 1, . . . ,

and item (a) follows. Now, the definition of xkj+1 combined with property (H4),
yields
(6.5)

f(xkj+1, y)+
1

εkj

h(xkj+1, y)+
1

λkjεkj

[
D(y, xkj )−D(y, xkj+1)− γD(xkj+1, xkj )

] ≥ 0
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for all y ∈ K and some γ > 0. On the other hand, as (H) and (H1) happen, from
item (ii) of Theorem 6.3 it is easy to see that

(6.6) lim sup
j→∞

[
D(y, xkj )−D(y, xkj+1)− γD(xkj+1, xkj )

]
= 0.

Because f and h satisfy (L2), taking the limsup as j goes to ∞ in (6.5) and using the
fact that lim infk→∞ λk > 0, limk→∞ εk = ∞, and (6.6) happens, we obtain

f(x∗, y) ≥ 0, y ∈ K,

which proves item (b). The proof of item (c) follows by using arguments similar to
those in item (b) and the fact that f(x, y) = 0 for all x, y ∈ S(f,K).

6.2. Convergence to a bilevel equilibrium.

Definition 6.5. A sequence {zk} ⊂ R
n is said to be quasi-Fejér convergent to

a set U �= ∅ with respect to the generalized proximal distance (d,D), if there exists a
nonnegative summable sequence {γk} such that, for each k ∈ N,

D(zk+1, u) ≤ D(zk, u) + γk, u ∈ U.

The next result is important to establish the convergence of the sequence gener-
ated by Algorithm 1.

Lemma 6.6. If {zk} ⊂ R
n is quasi-Fejér convergent to a set U �= ∅ with respect

to the generalized proximal distance (d,D), then {zk} is bounded. If a cluster point z
of {zk} belongs to U , then limk→∞ zk = z.

Proof. The proof is presented by Iusem, Svaiter, and Teboulle in [38].

Let us show that the whole sequence {xk} converges to a solution of (1.1).

Theorem 6.7. Under the assumptions of Theorem 6.3, the whole sequence {xk},
generated by Algorithm 1, converges to a solution of (1.1).

Proof. Inequality (6.4) combined with assumption (H) allows us to conclude that
{xk} is quasi-Fejér convergent to the set S(h, S(f,K)) with respect to the generalized
proximal distance (d,D). Hence, {xk} is bounded (it follows from Lemma 6.6). Let
x∗ be a cluster point of {xk}. Item (c) in Lemma 6.4 implies that x∗ ∈ S(h, S(f,K))
and the conclusion of the proof follows by using again Lemma 6.6.

6.3. Examples. In this section, we present two classes of problems for which the
assumptions of our main results are verified. For the first class of examples, we need
the following definition, which has appeared, for example, in [39]. Let ψ : K×K → R

be a bifunction and consider the equilibrium problem associated with ψ: find x∗ ∈ K
such that ψ(x∗, y) ≥ 0 for every y ∈ K. A solution x̂ ∈ S(ψ,K) is said to be a trivial
solution for the equilibrium problem if ψ(x̂, y) = 0 for every y ∈ K.

6.3.1. Fixed point in the lower level problem. Consider the bilevel prob-
lem (1.1) where each x̂ ∈ S(f,K) is a trivial solution for the lower level problem. This
holds, for example, when f(x, y) := 〈x−Tx, y−x〉, where T : K → K is an operator.
Note that, in this case, f satisfies (L1)–(L3) and, if T is a nonexpansive operator,
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then f also satisfies (L4). As noted in [9], Assumption H is verified and the bilevel
problem (1.1) reduces to:

find x̄ ∈ Fix(T ) such that h(x̄, y) ≥ 0, y ∈ Fix(T ),

where Fix(T ) := {x ∈ K : T (x) = x}. Indeed, it is possible to show that As-
sumption H holds whenever each x̂ ∈ S(f,K) is a trivial solution for the lower level
problem.

6.3.2. Minimization in the lower level problem. Let Ψ : K → R be a
convex and lsc function and assume that f(x, y) := Ψ(y) − Ψ(x). In this case,
S(f,K) = argminx∈KΨ(x) and the bilevel problem (1.1) reduces to

find x̄ ∈ argminx∈KΨ(x) such that h(x̄, y) ≥ 0, y ∈ argminx∈KΨ(x).

For an appropriate choice of h, this problem can be seen as a hierarchical minimization
problem; see section 3. It is easy to see that f satisfies (L1)–(L4). Now, let us suppose
that argminx∈kΨ(x) �= ∅, Ψ(x) = 0 for all x ∈ argminx∈kΨ(x), and assume that for
some θ > 0 and m > 1, we have

(6.7) Ψ0(y) ≥ θ

m
dist(y, S(f,K))m, y ∈ R

n,

where Ψ0(y) = Ψ(y) if y ∈ K and Ψ0(y) = ∞ if y /∈ K. Thus, using the definition of
dist(·, S(f,K)) and simple algebraic manipulations, from (6.7) we obtain, for y ∈ R

n

Ψ0(y) ≥ inf
x∈Rn

(
θ

m
‖x− y‖m + δS(f,K)(x)

)
=

(
θ

m
‖ · ‖m � δS(f,K)

)
(y),(6.8)

where � denotes the inf-convolution. Let us denote by Ψ∗
0 the conjugate function of

Ψ0. It is known that ( θ
m‖ · ‖m � δS(f,K))

∗(y) = ( θ
m‖ · ‖m)∗(y) + (δS(f,K))

∗(y) and

( θ
m‖·‖m)∗(y) = θ1−s

s ‖y‖s for s > 0 such that 1
m + 1

s = 1; see, for instance, [37, pp. 106
and 145] (in the first equality we use that S(f,K) is a convex set). Hence, for s > 0
such that 1

m + 1
s = 1, (6.8) implies

(6.9) Ψ∗(y) ≤
(
θ

m
‖ · ‖m � δS(f,K)

)∗
(y) =

θ1−s

s
‖y‖s + σS(f,K)(y), y ∈ R

n,

where the first inequality follows by using an elementary property of the conjugate of
convex functions; see [37, p. 104]. In particular, we note that if the sequences {λk}
and {εk} are chosen such that

∑∞
k=1

λk

εs−1
k

< ∞, then Assumption (H) holds. This

becomes evident when taking p ∈ R(NS(f,K)) and y = (2pεk ) in (6.9). Let us point out

that the case m = 2 was considered in [22]. Besides, we note that condition (6.7) also
appeared within [19] in the context of hierarchical minimization.

Remark 6.2. In both examples S(f,K) is assumed to be nonempty. Then, con-
dition (L5) is verified because f is, in each case, a monotone bifunction.

7. Application to stability and change dynamics of a hierarchical or-
ganization. Using a specific, but important VR variational structure, the algorithm
given in the previous section shows when a worthwhile stay and change dynamic (tran-
sition) xk+1 ∈ Wek,εk+1,,ξk+1

(xk), k ∈ N, of a hierarchical organization, approaches

18



(converges) and ends (reaches) in a variational trap, worthwhile to reach (an aspira-
tion point), and not worthwhile to leave (a stationary trap). More precisely, given
the previous period k, the current period k + 1, and the future period k + 2, we use
the nice variational BEP formulation, to modelize in the context of the VR approach,
the dynamic of a leader-follower relationship as a succession of worthwhile temporary
stays and changes. At the behavioral level, this problem is really challenging, because
its core hypothesis takes for granted that the environment, both internal and external
to the organization, is changing, which is presently the general case in our rapidly
changing world. Each period, as past experience ek evolves, the current sharing rule
εk+1, between advantages to change of, both, the leader and the follower, and the
variable worthwhile to change ratio ξk+1 = 1/λk, must be adapted to each period.
Then, at the behavioral level, the great merit of our work is to be able to show how,
starting from an uncomfortable initial position, the leader can use an adaptive process
with the hope of reaching a desired end, following an acceptable/worthwhile transi-
tion, both for him and for the follower. This worthwhile to change process balances,
for each period, in an adaptive way, on the one side, the advantages of changing for
the leader and the follower, and, on the other side, the weighted advantages to change
of both of them to their inconveniences to change, to end in a variational trap.

This process (our proximal point algorithm; see section 6.1) follows a worthwhile
to change transition consisting of a succession of weak stationary traps, with each of
them not being worthwhile to leave, given the current environment. Let us show that
each of these successive weak stationary traps is also worthwhile reaching from the
previous trap. This shows that our algorithm successfully modelizes a succession of
variational traps, worthwhile to reach from the previous trap, but not worthwhile to
leave. More precisely, given x̄ ∈ X , Lemma 5.3 shows that if f and h satisfy conditions
(L1)–(L4), then fk defined in (6.1) also satisfies conditions (L1)–(L4). In particular,
if fk(x, y) ≥ 0, we have fk(y, x) ≤ 0. Then, suppose that, in the current period k+1,
fk(x

k+1, y) ≥ 0 for all y ∈ K. This means that, in the current period, x = xk+1

is a weak stationary trap, i.e., it is not worthwhile to move from x = xk+1 to any
other position y ∈ K. This implies, in particular, that it is not worthwhile returning
to the previous position y = xk, i.e., fk(x

k+1, xk) ≥ 0. Then, (L4) implies that
fk(x

k, xk+1) ≤ 0, i.e., it is worthwhile to directly move from xk to xk+1. This shows
that xk+1 is a weak variational trap, worthwhile to reach from the last past position
xk, but not worthwhile to leave. Notice that, in the application, (L4) is satisfied by the
two functions f and h, because they are separable, as we have supposed in the example.
However, the current variational trap of the current period ceases to be a variational
trap in the next period, because the environment is changing. The proximal point
algorithm given in (6.1) defines an acceptable (worthwhile) stop and goes dynamic
where, during each period, the leader and the follower can bargain. Setting, for
each period, bounded sharing rules (which can change within bounds), and moving
from a current weak variational trap to the next, allows convergence of the leader-
follower relationship to a stable hierarchical position, a BEP equilibrium (a weak
stationary trap, with no inertia). In this way, the present algorithm, using the VR
approach, modelizes a habituation/routinization relationship, such that, step by step,
gradually, the organization implements an increasingly similar collective action. When
a worthwhile to change process converges to a weak variational trap, this variational
formulation offers a model of routine formation, ending in a collective trap, as the
end point of a path of worthwhile temporary stays and changes.

To summarize, the striking point is that, in our VR model, the formation of
habitual collective actions can occur even in a nonstationary environment. In each
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period, bargaining over payoffs destabilizes the current weak variational trap, and
the process proceeds to the next weak variational trap. However, in each period, the
collective action becomes increasingly similar, ending in a routinized collective action,
a hierarchical (bilevel) equilibrium, which is stable, even with no inconveniences to
change at the end! This shows that such an equilibrium defines, at the end, a kind of
very stable solution.

Remark 7.1. The behavioral content of the standard assumptions given in sec-
tion 5.1 can be described as follows:

(i) (L1) indicates that the advantages (or losses) to change from x to y are zero
for any stay;

(ii) (L2) and (L3) refer to regularity assumptions, which are natural assumptions
for the advantages to change function in the VR approach;

(iii) (L4) means that if there is an advantage to change from x to y, there is a
disadvantage to change from y to x (a no regret condition);

(iv) (L5) means that for any unbounded sequence of actions {yk}, there exists an
aspiration point u which the agent aims to reach, starting from any position
yk, k ≥ k0.
The fact that (L5) supposes the existence of aspiration points, confirms the
close relationship between proximal algorithms and, more generally, the varia-
tional principles of the VR approach, inspired by behavioral science principles,
where an aspiration point defines one side of a variational trap (worthwhile to
reach from some, or any point, of the sequence), the other side being the sta-
bility aspect (an equilibrium, not worthwhile to leave). This offers a striking
new point of view.
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