@. Bernhardt, K. Wilkinson, S. Weber, A. P. Linka, and N. , A peroxisomal carrier delivers NAD+ and contributes to optimal fatty acid degradation during storage oil mobilization, The Plant Journal, vol.127, issue.1, pp.1-13, 2012.
DOI : 10.1104/pp.010550

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04775.x/pdf

C. @bullet-cagnon, B. Mirabella, H. M. Nguyen, A. Beyly-adriano, S. Bouvet et al., Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii, Biotechnology for Biofuels, vol.6, issue.1, p.178, 2013.
DOI : 10.1016/j.ijhydene.2010.03.052

@. Daum, G. Wagner, A. Czabany, T. Athenstaedt, and K. , Dynamics of neutral lipid storage and mobilization in yeast, Biochimie, vol.89, issue.2, pp.243-248, 2007.
DOI : 10.1016/j.biochi.2006.06.018

@. Dmochowska, A. Dignard, D. Maleszka, R. Thomas, and D. Y. , Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acylcoenzyme A oxidase, Gene, vol.88, issue.2, pp.247-252, 1990.
DOI : 10.1016/0378-1119(90)90038-S

P. J. @bullet-eastmond, MONODEHYROASCORBATE REDUCTASE4 Is Required for Seed Storage Oil Hydrolysis and Postgerminative Growth in Arabidopsis, THE PLANT CELL ONLINE, vol.19, issue.4, pp.1376-1387, 2007.
DOI : 10.1105/tpc.106.043992

P. J. @bullet-eastmond, M. Hooks, and I. A. Graham, acyl-CoA oxidase gene family, Biochemical Society Transactions, vol.28, issue.6, pp.755-757, 2000.
DOI : 10.1042/bst0280755

@. Eaton and S. , Control of mitochondrial ??-oxidation flux, Progress in Lipid Research, vol.41, issue.3, pp.197-239, 2002.
DOI : 10.1016/S0163-7827(01)00024-8

J. L. @bullet-fan, C. Andre, and C. C. Xu, A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii, FEBS Lett, vol.585, 1985.

J. @bullet-fan, C. Yan, and C. Xu, Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis, Plant J, vol.76, pp.930-942, 2013.

J. @bullet-fan, C. Yan, X. Zhang, and C. Xu, Dual role for phospholipid:diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsisleaves, Plant Cell, vol.25, pp.3506-3518, 2013.

J. @bullet-fan, C. Yan, R. Roston, J. Shanklin, and C. Xu, Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward ?oxidation , thereby maintaining membrane lipid homeostasis, Plant Cell, vol.26, pp.4119-4134, 2014.

@. Gasser, B. Prielhofer, R. Marx, H. Maurer, M. Nocon et al., : protein production host and model organism for biomedical research, Future Microbiology, vol.6, issue.2, pp.191-208, 2013.
DOI : 10.1128/AEM.00607-10

@. Gerhardt and B. , Fatty acid degradation in plants, Progress in Lipid Research, vol.31, issue.4, pp.417-446, 1992.
DOI : 10.1016/0163-7827(92)90004-3

@. Gonzalez-ballester, D. Pootakham, W. Mus, and F. , Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants, Plant Methods, vol.7, pp.24-37, 2011.

@. González-ballester, D. De-montaigu, A. Higuera, J. J. Galván, A. Fernández et al., Functional Genomics of the Regulation of the Nitrate Assimilation Pathway in Chlamydomonas, PLANT PHYSIOLOGY, vol.137, issue.2, pp.522-533, 2005.
DOI : 10.1104/pp.104.050914

@. Graham and I. A. , Seed Storage Oil Mobilization, Annual Review of Plant Biology, vol.59, issue.1, pp.115-142, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092938

@. Graham, I. A. Eastmond, and P. J. , Pathways of straight and branched chain fatty acid catabolism in higher plants, Progress in Lipid Research, vol.41, issue.2, pp.156-181, 2002.
DOI : 10.1016/S0163-7827(01)00022-4

@. Grossman, A. Croft, M. Gladyshev, V. Merchant, S. Posewitz et al., Novel metabolism in Chlamydomonas through the lens of genomics, Current Opinion in Plant Biology, vol.10, issue.2, pp.190-198, 2007.
DOI : 10.1016/j.pbi.2007.01.012

@. Gu, L. Jones, A. D. Last, and R. L. , Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant, The Plant Journal, vol.126, issue.4, pp.579-590, 2010.
DOI : 10.1111/j.1365-313X.2009.04083.x

R. @bullet-haddouche, S. Delessert, J. Sabirova, C. Neuvéglise, Y. Poirier et al., Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards ??-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica, FEMS Yeast Research, vol.10, issue.7, pp.917-927, 2010.
DOI : 10.1042/bj1500077

@. Hayashi, Y. Shinozaki, and A. , Visualization of microbodies in Chlamydomonas reinhardtii, Journal of Plant Research, vol.16, issue.4, pp.579-586, 2012.
DOI : 10.1046/j.1365-313x.1998.00320.x

@. Hayashi, Y. Sato, N. Shinozaki, A. Watanabe, and M. , Increase in peroxisome number and the gene expression of putative glyoxysomal enzymes in Chlamydomonas cells supplemented with acetate, Journal of Plant Research, vol.34, issue.1, pp.177-185, 2015.
DOI : 10.1111/j.1749-6632.1982.tb21421.x

@. Hernández, M. L. Whitehead, L. He, Z. Gazda, V. Gilday et al., A Cytosolic Acyltransferase Contributes to Triacylglycerol Synthesis in Sucrose-Rescued Arabidopsis Seed Oil Catabolism Mutants, PLANT PHYSIOLOGY, vol.160, issue.1, pp.215-225, 2012.
DOI : 10.1104/pp.112.201541

@. Hooks, M. A. Kellas, F. Graham, and I. A. , Long-chain acyl-CoA oxidases of Arabidopsis, The Plant Journal, vol.268, issue.1, pp.1-13, 1999.
DOI : 10.1016/0014-5793(88)80097-8

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1999.00559.x/pdf

@. Hryb, D. J. Hogg, and J. F. , Chain length specificities of peroxisomal and mitochondrial ??-oxidation in rat liver, Biochemical and Biophysical Research Communications, vol.87, issue.4, pp.1200-1206, 1979.
DOI : 10.1016/S0006-291X(79)80034-0

@. Hu, J. Baker, A. Bartel, B. Linka, N. Mullen et al., Plant Peroxisomes: Biogenesis and Function, The Plant Cell, vol.24, issue.6, pp.2279-2303, 2012.
DOI : 10.1105/tpc.112.096586

URL : http://www.plantcell.org/content/plantcell/24/6/2279.full.pdf

@. Jaworski, J. Cahoon, and E. B. , Industrial oils from transgenic plants, Current Opinion in Plant Biology, vol.6, issue.2, pp.178-184, 2003.
DOI : 10.1016/S1369-5266(03)00013-X

@. Kato, J. Yamahara, T. Tanaka, K. Takio, S. Satoh et al., Characterization of catalase from green algae Chlamydomonas reinhardtii, Journal of Plant Physiology, vol.151, issue.3, pp.262-268, 1997.
DOI : 10.1016/S0176-1617(97)80251-9

@. Kaur, N. Reumann, S. Hu, and J. , Peroxisome Biogenesis and Function, The Arabidopsis Book, vol.7, p.123, 2009.
DOI : 10.1199/tab.0123.s1

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243405/pdf

@. Kessel-vigelius, S. K. Wiese, J. Schroers, M. G. Wrobel, T. J. Hahn et al., An engineered plant peroxisome and its application in biotechnology, Plant Science, vol.210, pp.232-240, 2013.
DOI : 10.1016/j.plantsci.2013.06.005

URL : https://doi.org/10.1016/j.plantsci.2013.06.005

@. Kim, J. J. Miura, and R. , Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences, European Journal of Biochemistry, vol.11, issue.3, pp.483-493, 2004.
DOI : 10.1107/S0021889891004399

@. Klein, A. T. Van-den-berg, M. Bottger, G. Tabak, H. F. Distel et al., Acyl-CoA Oxidase Follows a Novel, Non-PTS1, Import Pathway into Peroxisomes That Is Dependent on Pex5p, Journal of Biological Chemistry, vol.1346, issue.28, pp.25011-25019, 2002.
DOI : 10.1038/ng1097-190

@. Kong, F. Yamasaki, T. Kurniasih, S. D. Hou, L. Li et al., Robust expression of heterologous genes by selection marker fusion system in improved Chlamydomonas strains, Journal of Bioscience and Bioengineering, vol.120, issue.3, pp.239-245, 2015.
DOI : 10.1016/j.jbiosc.2015.01.005

@. Kunz, H. Scharnewski, M. Feussner, K. Feussner, I. Flügge et al., The ABC Transporter PXA1 and Peroxisomal ??-Oxidation Are Vital for Metabolism in Mature Leaves of Arabidopsis during Extended Darkness, THE PLANT CELL ONLINE, vol.21, issue.9, pp.2733-2749, 2009.
DOI : 10.1105/tpc.108.064857

K. J. @bullet-lauersen, R. Willamme, N. Coosemans, M. Joris, O. Kruse et al., Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii, Algal Research, vol.16, pp.266-274, 2016.
DOI : 10.1016/j.algal.2016.03.026

@. Lea, W. Abbas, A. S. Sprecher, H. Vockley, J. Schulz et al., Long-chain acyl- CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids, Biochim. Biophys. Acta, pp.1485-121, 2000.

@. Ledesma-amaro, R. Nicaud, and J. , Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids, Progress in Lipid Research, vol.61, pp.40-50, 2016.
DOI : 10.1016/j.plipres.2015.12.001

URL : https://hal.archives-ouvertes.fr/hal-01533872

@. Légeret, B. Schulz-raffelt, M. Nguyen, H. M. Auroy, P. Beisson et al., under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids, Plant, Cell & Environment, vol.34, issue.4, pp.834-847, 2016.
DOI : 10.1111/j.1365-3040.2011.02341.x

C. S. @bullet-lisenbee, M. Heinze, and R. N. Trelease, Peroxisomal Ascorbate Peroxidase Resides within a Subdomain of Rough Endoplasmic Reticulum in Wild-Type Arabidopsis Cells, PLANT PHYSIOLOGY, vol.132, issue.2, pp.870-882, 2003.
DOI : 10.1104/pp.103.019976

C. S. @bullet-lisenbee, M. J. Lingard, and R. N. Trelease, Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase, The Plant Journal, vol.296, issue.6, pp.900-914, 2005.
DOI : 10.1016/S0171-9335(99)80078-8

@. Merchant, S. S. Prochnik, S. E. Vallon, and O. , The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions, Science, vol.435, issue.7038, pp.318-245, 2007.
DOI : 10.1038/nature03481

URL : https://hal.archives-ouvertes.fr/hal-00188075

L. @bullet-moire, E. Rezzonico, S. Goepfert, and Y. Poirier, Impact of Unusual Fatty Acid Synthesis on Futile Cycling through ??-Oxidation and on Gene Expression in Transgenic Plants, PLANT PHYSIOLOGY, vol.134, issue.1, pp.432-442, 2004.
DOI : 10.1104/pp.103.032938

@. Napier and J. A. , The Production of Unusual Fatty Acids in Transgenic Plants, Annual Review of Plant Biology, vol.58, issue.1, pp.295-319, 2007.
DOI : 10.1146/annurev.arplant.58.032806.103811

@. Nguyen, H. M. Cuiné, S. Beyly-adriano, A. Légeret, B. Billon et al., The Green Microalga Chlamydomonas reinhardtii Has a Single ??-3 Fatty Acid Desaturase That Localizes to the Chloroplast and Impacts Both Plastidic and Extraplastidic Membrane Lipids, PLANT PHYSIOLOGY, vol.163, issue.2, pp.914-928, 2013.
DOI : 10.1104/pp.113.223941

@. Pinfield-wells, H. Rylott, E. L. Gilday, A. D. Graham, S. Job et al., Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism, The Plant Journal, vol.127, issue.6, pp.861-872, 2005.
DOI : 10.1016/S0176-1617(11)80459-1

C. @bullet-plancke, H. Vigeolas, and R. Hohner, leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth, The Plant Journal, vol.214, issue.3, pp.404-417, 2014.
DOI : 10.1007/s004250100660

@. Poirier and Y. , Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism, Progress in Lipid Research, vol.41, issue.2, pp.131-155, 2002.
DOI : 10.1016/S0163-7827(01)00018-2

@. Poirier, Y. Antonenkov, V. D. Glumoff, T. Hiltunen, and J. K. , Peroxisomal betaoxidation ? a metabolic pathway with multiple functions, Biochim. Biophys. Acta, pp.1763-1413, 2006.
DOI : 10.1016/j.bbamcr.2006.08.034

URL : https://doi.org/10.1016/j.bbamcr.2006.08.034

@. Poliner, E. Panchy, N. Newton, L. Wu, G. Lapinsky et al., CCMP1779 under light/dark cycles, The Plant Journal, vol.4, issue.6, pp.1097-1113, 2015.
DOI : 10.1371/journal.pone.0005135

@. Pracharoenwattana, I. Cornah, J. E. Smith, and S. M. , Arabidopsis Peroxisomal Citrate Synthase Is Required for Fatty Acid Respiration and Seed Germination, THE PLANT CELL ONLINE, vol.17, issue.7, pp.2037-2048, 2005.
DOI : 10.1105/tpc.105.031856

URL : http://www.plantcell.org/content/plantcell/17/7/2037.full.pdf

@. Pracharoenwattana, I. Zhou, W. X. Smith, and S. M. , Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent, Plant Molecular Biology, vol.14, issue.1-2, pp.101-109, 2010.
DOI : 10.1104/pp.115.3.891

P. E. @bullet-purdue and P. B. Lazarow, Peroxisome Biogenesis, Annual Review of Cell and Developmental Biology, vol.17, issue.1, pp.701-752, 2001.
DOI : 10.1146/annurev.cellbio.17.1.701

@. Rambold, A. S. Cohen, S. Lippincott-schwartz, and J. , Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics, Developmental Cell, vol.32, issue.6, pp.678-692, 2015.
DOI : 10.1016/j.devcel.2015.01.029

URL : https://doi.org/10.1016/j.devcel.2015.05.007

J. A. @bullet-rhodin, Correlation of Ultrastructural Organization: and Function in Normal and Experimentally Changed Proximal Convoluted Tubule Cells of the Mouse Kidney: An Electron Microscopic Study, 1954.

@. Shimogawara, K. Fujiwara, S. Grossman, A. Usuda, and H. , High-efficiency transformation of Chlamydomonas reinhardtii by electroporation, Genetics, vol.148, pp.1821-1828, 1998.

@. Shinozaki, A. Sato, N. Hayashi, and Y. , Reporter gene assay of targeting signal-like elements and the expression pattern of peroxisomal enzymes in Chlamydomonas reinhardtii, Plant Cell Physiol, vol.46, pp.823-829, 2005.

@. Shinozaki, A. Sato, N. Hayashi, and Y. , Peroxisomal targeting signals in green algae, Protoplasma, vol.105, issue.1-4, pp.57-66, 2009.
DOI : 10.1007/BF00260500

@. Siaut, M. Cuine, S. Cagnon, and C. , Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves, BMC Biotechnology, vol.11, issue.1, 2011.
DOI : 10.1186/1472-6750-11-7

@. Sizova, I. Fuhrmann, M. Hegemann, and P. , A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii, Gene, vol.277, issue.1-2, pp.221-229, 2001.
DOI : 10.1016/S0378-1119(01)00616-3

@. Slocombe, S. Cornah, J. Pinfield-wells, H. Soady, K. Zhang et al., Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways, Plant Biotechnology Journal, vol.19, issue.7, pp.694-703, 2009.
DOI : 10.1111/j.1467-7652.2009.00435.x

@. Stabenau, H. Winkler, U. Saftel, and W. , Enzymes of ??-Oxidation in Different Types of Algal Microbodies, PLANT PHYSIOLOGY, vol.75, issue.3, pp.531-533, 1984.
DOI : 10.1104/pp.75.3.531

@. Stabenau, H. Winkler, U. Saftel, and W. , Compartmentation of Peroxisomal Enzymes in Algae of the Group of Prasinophyceae : Occurrence of Possible Microbodies without Catalase, PLANT PHYSIOLOGY, vol.90, issue.2, pp.754-759, 1989.
DOI : 10.1104/pp.90.2.754

@. Stevens, D. R. Purton, S. Rochaix, and J. D. , The bacterial phleomycin resistance geneble as a dominant selectable marker in Chlamydomonas, Mol. Gen. Genet, vol.251, pp.23-30, 1996.

@. Tardif, M. Atteia, A. Specht, and M. , PredAlgo: A New Subcellular Localization Prediction Tool Dedicated to Green Algae, Molecular Biology and Evolution, vol.3, issue.12, pp.3625-3639, 2012.
DOI : 10.1371/journal.pone.0001994

URL : https://hal.archives-ouvertes.fr/hal-00783004

@. Theodoulou, F. L. Eastmond, and P. J. , Seed storage oil catabolism: a story of give and take, Current Opinion in Plant Biology, vol.15, issue.3, pp.322-328, 2012.
DOI : 10.1016/j.pbi.2012.03.017

E. M. @bullet-trentacoste, R. P. Shrestha, S. R. Smith, C. Glé, A. C. Hartmann et al., Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth, Proc. Natl Acad. Sci. USA, pp.19748-19753, 2013.
DOI : 10.1371/journal.pone.0034418

@. Troncoso-ponce, M. A. Cao, X. Yang, Z. Ohlrogge, and J. B. , Lipid turnover during senescence, Plant Science, vol.205, issue.206, pp.205-206, 2013.
DOI : 10.1016/j.plantsci.2013.01.004

URL : https://doi.org/10.1016/j.plantsci.2013.01.004

@. Vanroermund, C. W. Elgersma, Y. Singh, N. Wanders, R. J. Tabak et al., The membrane of peroxisomes in Saccharomyces cerevisae is impermeable to NAD(H) and acetym-CoA under in vivo conditions, EMBO J, vol.14, pp.3480-3486, 1995.

@. Winkler, U. Saftel, W. Stabenau, and H. , ?-Oxidation of fatty acids in algae: Localization of thiolase and acyl-CoA oxidizing enzymes in three different organisms, Planta, vol.75, issue.1, pp.91-98, 1988.
DOI : 10.1007/BF00402885

J. M. @bullet-zones, I. K. Blaby, S. S. Merchant, and J. G. Umen, High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation, Plant Cell, vol.27, pp.2743-2769, 2015.