B. Berlett and E. Stadtman, Protein Oxidation in Aging, Disease, and Oxidative Stress, Journal of Biological Chemistry, vol.60, issue.33, pp.20313-20316, 1997.
DOI : 10.1016/B978-0-12-152828-7.50010-X

R. Levine, Carbonyl modified proteins in cellular regulation, aging, and disease2,3 2Guest Editor: Earl Stadtman 3This article is part of a series of reviews on ???Oxidatively Modified Proteins in Aging and Disease.??? The full list of papers may be found on the homepage of the journal., Free Radical Biology and Medicine, vol.32, issue.9, pp.790-796, 2002.
DOI : 10.1016/S0891-5849(02)00765-7

B. Shastry, Neurodegenerative disorders of protein aggregation, Neurochemistry International, vol.43, issue.1, pp.1-7, 2003.
DOI : 10.1016/S0197-0186(02)00196-1

D. Selkoe, Folding proteins in fatal ways, Nature, vol.8, issue.6968, pp.900-904, 2003.
DOI : 10.1016/S1471-4914(02)02310-9

M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, and L. Formigli, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, vol.309, issue.6880, pp.507-511, 2002.
DOI : 10.1016/S0076-6879(99)09050-3

R. Levine, Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue, J Biol Chem, vol.258, pp.11823-11827, 1983.

S. Dukan and T. Nystrom, Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon, Genes & Development, vol.12, issue.21, pp.3431-3441, 1998.
DOI : 10.1101/gad.12.21.3431

I. Dalle-donne, G. Aldini, M. Carini, R. Colombo, and R. Rossi, Protein carbonylation, cellular dysfunction, and disease progression, Journal of Cellular and Molecular Medicine, vol.5, issue.2, pp.389-406, 2006.
DOI : 10.1089/152308603770310167

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1582-4934.2006.tb00407.x/pdf

E. Cabiscol, E. Piulats, P. Echave, E. Herrero, and R. J. , Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.275, pp.27393-27398, 2000.
DOI : 10.1074/jbc.M003140200

R. Sohal, Role of oxidative stress and protein oxidation in the aging process1,2 1Guest Editor: Earl Stadtman 2This article is part of a series of reviews on ???Oxidatively Modified Proteins in Aging and Disease.??? The full list of papers may be found on the homepage of the journal., Free Radical Biology and Medicine, vol.33, issue.1, pp.37-44, 2002.
DOI : 10.1016/S0891-5849(02)00856-0

T. Nystrom, Role of oxidative carbonylation in protein quality control and senescence, The EMBO Journal, vol.421, issue.7, pp.1311-1317, 2005.
DOI : 10.1038/sj.emboj.7600599

S. Lee, N. Young, P. Whetstone, S. Cheal, and W. Benner, Method to Site-Specifically Identify and Quantitate Carbonyl End Products of Protein Oxidation Using Oxidation-Dependent Element Coded Affinity Tags (O-ECAT) and NanoLiquid Chromatography Fourier Transform Mass Spectrometry, Journal of Proteome Research, vol.5, issue.3, pp.539-547, 2006.
DOI : 10.1021/pr050299q

H. Mirzaei and F. Regnier, Affinity Chromatographic Selection of Carbonylated Proteins Followed by Identification of Oxidation Sites Using Tandem Mass Spectrometry, Analytical Chemistry, vol.77, issue.8, pp.2386-2392, 2005.
DOI : 10.1021/ac0484373

H. Mirzaei and F. Regnier, Enrichment of Carbonylated Peptides Using Girard P Reagent and Strong Cation Exchange Chromatography, Analytical Chemistry, vol.78, issue.3, pp.770-778, 2006.
DOI : 10.1021/ac0514220

H. Mirzaei and F. Regnier, Creation of Allotypic Active Sites during Oxidative Stress, Journal of Proteome Research, vol.5, issue.9, pp.2159-2168, 2006.
DOI : 10.1021/pr060021d

A. Temple, T. Yen, and S. Gronert, Identification of specific protein carbonylation sites in model oxidations of human serum albumin, Journal of the American Society for Mass Spectrometry, vol.67, issue.8, pp.1172-1180, 2006.
DOI : 10.1139/v89-118

E. Maisonneuve, L. Fraysse, S. Lignon, L. Capron, and S. Dukan, Carbonylated Proteins Are Detectable Only in a Degradation-Resistant Aggregate State in Escherichia coli, Journal of Bacteriology, vol.190, issue.20, pp.6609-6614, 2008.
DOI : 10.1128/JB.00588-08

J. Liu and B. Rost, NORSp: predictions of long regions without regular secondary structure, Nucleic Acids Research, vol.31, issue.13, pp.3833-3835, 2003.
DOI : 10.1093/nar/gkg515

S. Dukan and T. Nystrom, Cells, Journal of Biological Chemistry, vol.179, issue.37, pp.26027-26032, 1999.
DOI : 10.1126/science.279.5357.1718

C. Job, L. Rajjou, Y. Lovigny, M. Belghazi, and J. D. , Patterns of Protein Oxidation in Arabidopsis Seeds and during Germination, PLANT PHYSIOLOGY, vol.138, issue.2, pp.790-802, 2005.
DOI : 10.1104/pp.105.062778

URL : https://hal.archives-ouvertes.fr/hal-00083824

J. Mostertz and M. Hecker, Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells, Molecular Genetics and Genomics, vol.269, issue.5, pp.640-648, 2003.
DOI : 10.1007/s00438-003-0877-4

S. Dukan, A. Farewell, M. Ballesteros, F. Taddei, and M. Radman, Protein oxidation in response to increased transcriptional or translational errors, Proceedings of the National Academy of Sciences, vol.440, issue.3, pp.5746-5749, 2000.
DOI : 10.1016/S0014-5793(98)01495-1

A. Fredriksson, M. Ballesteros, S. Dukan, and T. Nystrom, Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins, Molecular Microbiology, vol.12, issue.1, pp.350-359, 2006.
DOI : 10.1016/S1369-5274(99)80027-7

URL : https://hal.archives-ouvertes.fr/hal-00023671

C. Oliver, P. Starke-reed, E. Stadtman, G. Liu, and J. Carney, Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain., Proceedings of the National Academy of Sciences, vol.87, issue.13, pp.5144-5147, 1990.
DOI : 10.1073/pnas.87.13.5144

E. Stadtman, Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences, Free Radical Biology and Medicine, vol.9, issue.4, pp.315-325, 1990.
DOI : 10.1016/0891-5849(90)90006-5

D. Bota and K. Davies, Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism, Nature Cell Biology, vol.7, issue.9, pp.674-680, 2002.
DOI : 10.1089/oli.1.1997.7.187

T. Grune, K. Merker, G. Sandig, and K. Davies, Selective degradation of oxidatively modified protein substrates by the proteasome, Biochemical and Biophysical Research Communications, vol.305, issue.3, pp.709-718, 2003.
DOI : 10.1016/S0006-291X(03)00809-X

J. Requena, C. Chao, R. Levine, and E. Stadtman, Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins, Proceedings of the National Academy of Sciences, vol.21, issue.4, pp.69-74, 2001.
DOI : 10.1016/0891-5849(96)00125-6

B. Desnues, C. Cuny, G. Gregori, S. Dukan, and H. Aguilaniu, cells, EMBO reports, vol.1, issue.4, pp.400-404, 2003.
DOI : 10.1093/embo-reports/kvd106

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels, Analytical Chemistry, vol.68, issue.5, pp.850-858, 1996.
DOI : 10.1021/ac950914h

S. Altschul, T. Madden, A. Schaffer, J. Zhang, and Z. Zhang, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

P. Lieutaud, B. Canard, and S. Longhi, MeDor: a metaserver for predicting protein disorder, BMC Genomics, vol.9, issue.Suppl 2, p.25, 2008.
DOI : 10.1186/1471-2164-9-S2-S25

Z. Dosztanyi, V. Csizmok, P. Tompa, and I. Simon, IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content, Bioinformatics, vol.20, issue.13, pp.3433-3434, 2005.
DOI : 10.1093/bioinformatics/bth195

K. Coeytaux and A. Poupon, Prediction of unfolded segments in a protein sequence based on amino acid composition, Bioinformatics, vol.18, issue.3, pp.1891-1900, 2005.
DOI : 10.1016/0097-8485(94)85023-2

Z. Yang, R. Thomson, P. Mcneil, and R. Esnouf, RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics, vol.16, issue.43, pp.3369-3376, 2005.
DOI : 10.1109/TNN.2004.836196

O. Galzitskaya, S. Garbuzynskiy, and M. Lobanov, FoldUnfold: web server for the prediction of disordered regions in protein chain, Bioinformatics, vol.21, issue.16, pp.2948-2949, 2006.
DOI : 10.1093/bioinformatics/bti534

S. Garbuzynskiy, M. Lobanov, and O. Galzitskaya, To be folded or to be unfolded?, Protein Science, vol.293, issue.11, pp.2871-2877, 2004.
DOI : 10.1110/ps.9.3.580

URL : http://onlinelibrary.wiley.com/doi/10.1110/ps.04881304/pdf

R. Linding, R. Russell, V. Neduva, and T. Gibson, GlobPlot: exploring protein sequences for globularity and disorder, Nucleic Acids Research, vol.31, issue.13, pp.3701-3708, 2003.
DOI : 10.1093/nar/gkg519

URL : https://academic.oup.com/nar/article-pdf/31/13/3701/9487141/gkg519.pdf

J. Prilusky, C. Felder, T. Zeev-ben-mordehai, E. Rydberg, and O. Man, FoldIndex(C): a simple tool to predict whether a given protein sequence is intrinsically unfolded, Bioinformatics, vol.36, issue.13, pp.3435-3438, 2005.
DOI : 10.1021/bi9627626

Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, and C. Brown, Predicting intrinsic disorder from amino acid sequence, Proteins: Structure, Function, and Genetics, vol.10, issue.S6, pp.566-572, 2003.
DOI : 10.1007/978-1-4899-4541-9

URL : http://www.ist.temple.edu/~vucetic/documents/obradovic_proteins03.pdf

Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, and A. Dunker, Exploiting heterogeneous sequence properties improves prediction of protein disorder, Proteins: Structure, Function, and Bioinformatics, vol.341, issue.S7, 2005.
DOI : 10.1148/radiology.148.3.6878708

J. Chandonia and M. Karplus, New methods for accurate prediction of protein secondary structure, Proteins: Structure, Function, and Genetics, vol.10, issue.3, pp.293-306, 1999.
DOI : 10.1016/0005-2795(75)90109-9

I. Callebaut, G. Labesse, P. Durand, A. Poupon, and L. Canard, Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives, Cellular and Molecular Life Sciences (CMLS), vol.53, issue.8, pp.621-645, 1997.
DOI : 10.1007/s000180050082

URL : https://hal.archives-ouvertes.fr/hal-00309857

J. Bourhis, B. Canard, and S. Longhi, Predicting Protein Disorder and Induced Folding: From Theoretical Principles to Practical Applications, Current Protein & Peptide Science, vol.8, issue.2, 2007.
DOI : 10.2174/138920307780363451

F. Ferron, S. Longhi, B. Canard, and D. Karlin, A practical overview of protein disorder prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.101, issue.Pt 3, pp.1-14, 2006.
DOI : 10.1016/j.cub.2004.01.051

E. Wolf, P. Kim, and B. Berger, MultiCoil: A program for predicting two-and three-stranded coiled coils, Protein Science, vol.4, issue.6, pp.1179-1189, 1997.
DOI : 10.1002/pro.5560040818

URL : http://onlinelibrary.wiley.com/doi/10.1002/pro.5560060606/pdf

R. Tatusov, M. Galperin, D. Natale, and E. Koonin, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Research, vol.28, issue.1, pp.33-36, 2000.
DOI : 10.1093/nar/28.1.33

R. Tatusov, D. Natale, I. Garkavtsev, T. Tatusova, and U. Shankavaram, The COG database: new developments in phylogenetic classification of proteins from complete genomes, Nucleic Acids Research, vol.29, issue.1, pp.22-28, 2001.
DOI : 10.1093/nar/29.1.22