
�>���G �A�/�, �?���H�@�y�R�e�N�N�3�y�9

�?�i�i�T�b�,�f�f�?���H�@���K�m�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�R�e�N�N�3�y�9

�a�m�#�K�B�i�i�2�/ �Q�M �8 �6�2�# �k�y�R�3

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J���;�M�2�i�B�+ �b�i�`�Q�M�; �+�Q�m�T�H�B�M�; �B�M �� �b�T�B�M�@�T�?�Q�i�Q�M �b�v�b�i�2�K ���M�/
�i�`���M�b�B�i�B�Q�M �i�Q �+�H���b�b�B�+���H �`�2�;�B�K�2

�A�X �*�?�B�Q�`�2�b�+�m�- �L�X �:�`�Q�H�H�- �a�v�H�p���B�M �"�2�`�i���B�M���- �h�X �J�Q�`�B�- �a�X �J�B�v���b�?�B�i��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�A�X �*�?�B�Q�`�2�b�+�m�- �L�X �:�`�Q�H�H�- �a�v�H�p���B�M �"�2�`�i���B�M���- �h�X �J�Q�`�B�- �a�X �J�B�v���b�?�B�i���X �J���;�M�2�i�B�+ �b�i�`�Q�M�; �+�Q�m�T�H�B�M�; �B�M �� �b�T�B�M�@
�T�?�Q�i�Q�M �b�v�b�i�2�K ���M�/ �i�`���M�b�B�i�B�Q�M �i�Q �+�H���b�b�B�+���H �`�2�;�B�K�2�X �S�?�v�b�B�+���H �_�2�p�B�2�r �"�, �*�Q�M�/�2�M�b�2�/ �J���i�i�2�` ���M�/ �J���i�2�`�B���H�b
�S�?�v�b�B�+�b�- ���K�2�`�B�+���M �S�?�v�b�B�+���H �a�Q�+�B�2�i�v�- �k�y�R�y�- �3�k �U�k�V�- ���R�y�X�R�R�y�j�f�S�?�v�b�_�2�p�"�X�3�k�X�y�k�9�9�R�j���X ���?���H�@�y�R�e�N�N�3�y�9��



Magnetic strong coupling in a spin-photon system and transition to classical regime

I. Chiorescu,1 N. Groll,1 S. Bertaina,1,2 T. Mori,3,4 and S. Miyashita3,4

1Department of Physics and The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
2IM2NP-CNRS (UMR 6242), Université Aix-Marseille, 13397 Marseille Cedex, France

3Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
4CRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

�Received 8 April 2010; revised manuscript received 17 June 2010; published 14 July 2010�

We study the energy level structure of the Tavis-Cumming model applied to an ensemble of independent
magnetic spinss=1/2 coupled to a variable number of photons. Rabi splittings are calculated and their
distribution is analyzed as a function of photon numbernmax and spin system sizeN. A sharp transition in the
distribution of the Rabi frequency is found atnmax� N. The width of the Rabi frequency spectrum diverges as
� N at this point. For increased number of photonsnmax� N, the Rabi frequencies converge to a value propor-
tional to � nmax. This behavior is interpreted as analogous to the classical spin-resonance mechanism where the
photon is treated as a classical Þeld and one resonance peak is expected. We also present experimental data
demonstrating cooperative, magnetic strong coupling between a spin system and photons, measured at room
temperature. This points toward quantum computing implementation with magnetic spins, using cavity
quantum-electrodynamics techniques.
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I. INTRODUCTION

Interactions of quantum systems with electromagnetic ex-
citations are at the core of quantum information processing.
Using photons and photonic entanglement, qubits can be de-
tected and manipulated, and quantum information can, in
principle, be transferred over long distances.1 Of particular
interest are the resonant modes in electromagnetic cavities,
which have the potential of inducing a strong coupling re-
gime such that the interaction outlast both photonÕs decay
and qubit decoherence times.2,3 Following the work of
Dicke4 on multiatom superradiance, the case of a single atom
in interaction withn photons has been studied theoretically
by Jaynes and Cummings,5 and later on generalized6Ð9 for a
number ofN otherwise noninteracting atomic systems. Other
theoretical studies, applied to solid state systems,10 have in-
cluded environmental effects as well�e.g., in semiconducting
materials11,12� or ensemble-locking in a giant spin.13 Experi-
mentally, the phenomena of strong coupling regime has been
reached by using the electric Þeld component of the electro-
magnetic excitations: in one or more atomic systems,14,15

semiconductors,16 and superconducting qubits in interaction
with one17 or more photons.18,19 These studies prove the ap-
pearance of the so-called vacuum-Þeld Rabi splitting�VRS�
in the absorbtion peak of a probing photon Þeld.

In contrast, achieving large magnetic coupling between a
photon and a quantum spin, has been explored to a lesser
extent, due to the typical smallness of the magnetic compo-
nent �B Þeld� of the electromagnetic Þeld. However, since
spin-based qubits do reveal signiÞcant coherence times for
temperatures up to ambient value,20,21 the issue of coupling
spin qubits to photons for data manipulation and transfer
becomes of increasing interest. In the usual magnetic reso-
nance methods, e.g., electron spin resonance�ESR�, the ab-
sorption measurement of the electromagnetic Þeld is related
to the energy structure of the spin system. Feedback effects
of the B-Þeld component on the spins are ignored which

means that for a two-level system there is one absorbtion
peak at a frequency matching the levels separation. On the
other hand, as mentioned above in the case of electrical cou-
pling, photon absorption can probe the quantum mechanical
interaction between the quantum system and the cavity pho-
tons which leads to VRS. In this paper, we will study the
relation between these two cases, one classical and the other
one quantum, by comparing the effects of magnetic coupling
betweenN noninteracting spinss=1/2 and the external ra-
diation Þeld. The transition between the classical and quan-
tum case will be analyzed as well.

Because the wavelength of the external Þeld is large com-
pared with the distances between spins, all the spins interact
with a single mode of electromagnetic Þeld. In the classical
case of spin resonance, the system Hamiltonian is given by
H S=H Z0+H ac whereH Z0 is the Zeeman coupling to a static
ÞeldHz

H Z0 = • � 0Hz�
i=1

N

mi
z =

� � 0

2 �
i

N

� i
z, �1�

where mz=• gs� B� i
z/2 gives the magnetic moment of spin

i �gs is the g-factor, equal to 2 for a free spin and� B is the
Bohr magneton� and � � 0 is the Zeeman splitting generated
by Hz. The termH ac represents the spin coupling to an alter-
nating B-Þeld componenth0 oscillating with a frequency
� /2� . Using the notation�	 R=� 0h0gs� B/2 and the Pauli
projection and raising/lowering operators this term is written
as

H acR=
1

2
�	 R�

i=1

N

�ei� t� i
+ + e• i� t� i

• � � 2�

for a rotatingB Þeld or, for an uniaxialB Þeld, as
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H acX = �	 Rcos� � t� �
i=1

N

� i
x. �3�

When treating the radiation Þeld quantum mechanically, as
in the Jaynes-Cummings model, the spin-photon coupling is
described by a parameterg, here assumed to be the same for
all spins

H = HZ0 + � g�
i

N

�b� i
+ + b  � i

• � + � � b  b �4�

with b, b  the photon annihilation/creation operators. The
amplitude of the electromagnetic Þeld is a dynamical vari-
able but not an external parameter as in the case of Eq.�2� or
�3�. Namely, the strength of the electromagnetic Þeld is given
by b  b in the quantum mechanical model in Eq.�4� while it
is given byh0 in the classical models in Eqs.�2� and�3�.

II. COMPLEX SUSCEPTIBILITY IN THE LINEAR
RESPONSE THEOREM

In the linear response theory,22,23 the imaginary part of the
complex susceptibility is given by


 � � � � =
1 • e• � � �

2
�

• �

�

�Mx�0�Mx� t�� 0e
• i� tdt, �5�

where Mx= 1
2� i� i

x, � ¯ � 0=Tr¯ e• � H Z0/Tre• � H Z0, � =1/kBT,
kB is the Boltzmann constant, andT is systemÕs temperature.
This gives a coefÞcient of proportionality between the in-
duced quantity�Mx� and the Þeldh0 at h0=0. The eigenval-
ues of H Z0 are simply given byEk=k� � 0, k=• N, ¯ ,N,
each of which isNCk=N! /k! �N• k� ! times degenerate. There
is only one energy difference
 E=� � 0 that has nonzero ma-
trix element ofMx. In this case, each spin interacts only with
the Þeld, individually. Thus, we have a single peak in
 � � � �
at � =� 0. If we include some interactions among spins, such
as the dipole-dipole interactions, the degeneracy of the en-
ergy levels of theN spin system would be resolved, and
additional peaks in
 � � � � are expected.

Quantum dynamics of paramagnetic spins under an ac Þeld:
Rabi oscillation

If we consider the dynamics of spins in the ESR Hamil-
tonianH S, the total magnetization shows the so-called Rabi
oscillation. By transforming the wave function	� � t�� as

	� � t�� = ei�1/2� � 0t� z	� � t�� 
 U	� � t�� � 6�

the rotating frame version ofH S is given by

UH SU•1 =
1

2
�	 R�

i

N

� � i
+ + � i

• � = �	 R�
i

N

� x �7�

at resonance. In this representation, thez component of the
magnetization rotates around thex axis with the angular ve-
locity �� =	 R, which is the Rabi oscillation. It should be
noted that the phase oscillates with the angular frequency� 0,
which causes a rotation of the magnetization around thez

axis in the laboratory frame. The effective eigenvalues of
Hamiltonian�7� are given by

Ẽk = k�	 R • N � k � N, �8�

which are equidistant� 
 Ẽk=�	 R� and again we consider
that each spin interacts only with the Þeld, individually.

III. QUANTUM TREATMENT OF SPIN-PHOTON
COUPLING

Now we study the case where the interaction between
spins and photons is treated quantum mechanically. We start
by reviewing the energy diagram of model in Eq.�4�.

A. Case of single spinN=1

First, we consider the case ofN=1. We adopt the basis
	n,� � wheren denotes the number of photons in the cavity
and� =• /+ shows the ground/excited state as an eigenvalue
of � z. The matrix ofH is separated into 2� 2 blocks for each
pair �	n, • � , 	n•1,+ �� , given by



• � � 0

2
+ n� � � g� n

� g� n
� � 0

2
+ �n • 1 � � � �. �9�

The eigenstates are given by

E� = � � �n •
1

2
� � �

�
2

,

	� � � =
1
� 2
� � 1 � 
 /�

� � 1 � 
 /�
�, �10�

where
 =� • � 0 and� =� 
 2+4ng2. At resonance� =� 0, the
above reduces to

E� = �n •
1

2
�� � 0 � � g� n,

	� � � =
1
� 2
� 1

� 1
�. �11�

Note that all blocks have the same photon number + magne-
tization constant,7 C=n•1 /2=�n•1 � +1/2.

B. Case of a spin ensembleN� 1

For N� 1, the working basis becomes	n,� � 1¯ � N��
where� i =• /+ shows the ground/excited state ofith spin, as
an eigenvalue of� i

z. When photons are absorbed or emitted
by the spin ensemble, the quantityC=n+M is conserved,6,7

with M =m• N/2 the ensemble magnetization,m the number
of excited spins, andn the number of remaining photons.
The Hilbert space corresponding to allm values isNC0+ ¯
+NCN=2N in length. Further division in independent sub-
blocks can be done if one use a total spin representation.7

The system Hamiltonian can be written as
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H =
� � 0

2
Sz + � � b  b + � g�bS+ + b  S• � � 12�

with Sz,+,• =� i
N� i

z,+,• . The Hamiltonian commutes with the
total spin�Sx�2+�Sy�2+�Sz�2 and can be further separated into
smaller blocks, classiÞed by the total spinS. When all spins
are in the ground state, the total spin is maximum,S=N/2.
From here on we discuss the caseS=N/2 since further pho-
ton excitations and emissions will selectively couple states
within this subspace only. The subspace can be further lim-
ited if there are not enough photons to ßip all the spins in the
system:m ranges from 0 tomin�N,nmax� with nmax=n+m the
number of photons forSz=• N/2. Using a basis�	m� ,0� m
� min�N,nmax�� and the relation�S=N/2�

S+	S,M� = � S�S+ 1� • M�M + 1�	S,M + 1� = � �m+ 1�� N • m�

� 	S,M + 1� � 13�

the diagonal and off-diagonal terms of Eq.�12� are

H m,m = �m• N/2� � � 0 + �nmax• m� � � ,

H m,m+1 = � g� nmax• m� �m+ 1�� N • m� . �14�

At resonance, the diagonal term becomesH m,m=�nmax
• N/2� � � 0 and is independent onm.

IV. EIGENVALUES FOR AN ENSEMBLE OF SPINS

For a total spinS=N/2, one expectsN+1 eigenstates of
which N• nmax are diagonal spin states andnmax+1 are
coupled spin-photon states�if nmax� N, all N+1 states are
coupled�.

A. Analytical expressions fornmax=0Ð3

Analytical expressions for eigenvaluesEm
�nmax� are listed

below for few simple cases.

1. Case nmax=0

In the vacuum-Þeld where no photon exist when all spins
are in the ground state, there is a unique state and its eigen-
value is given by

E0
�0� = •

� � 0N

2
. �15�

2. Case nmax=1

In this case there are two coupled states:	n=1,m=N� and
	n=0,m=N•1 � . The Hamiltonian of this block is


� � 0�•
N

2
� + � � g� N

g� N � � 0�•
N

2
+ 1��	n = 1,m= 0�

	n = 0,m= 1�

= � � 0�•
N

2
+ 1� + �� � � • � 0� g� N

g� N 0
� �16�

and the eigenenergies are given by�m=0,1�

Em
�1�/� = � 0�•

N

2
+ 1� +




2
+ �m•

1

2
�� 
 2 + 4Ng2. �17�

The VRS is given by

E1
�1� • E0

�1� = � � 
 2 + 4Ng2 �18�

and represents the rate at which the spin system coherently
exchanges one photon with the radiation Þeld.

3. Case nmax=2

The spin-photon states span over three states:	n=2,m
=N�, 	n=1,m=N•1 � , and 	n=0,m=N•2 � . At resonance

=0, the Hamiltonian is given by

� � 0�2 •
N

2
� + 


0 � g� 2N 0

� g� 2N 0 � g� 2�N • 1 �

0 � g� 2�N • 1 � 0
�
�19�

and the eigenvalues are given by�m=0,1,2�

Em
�2�/� = � 0�•

N

2
+ 2� + �m• 1 �g� 4N • 2. �20�

Here, the Rabi frequencies are degenerate

E2
�2� • E1

�2� = E1
�2� • E0

�2� = � g� 4N • 2. �21�

4. Case nmax=3

Following a similar approach as fornmax=2, the Hamil-
tonian at resonance is given by

� � 0�3 •
N

2
�

+

0 � g� 3N 0 0

� g� 3N 0 � g� 4�N • 1 � 0

0 � g� 4�N • 1 � 0 � g� 3�N • 2 �

0 0 � g� 3�N • 2 � 0
�
�22�

with eigenvalues

Em
�3�/� = � � 0� • N/2 + 3� � g� 5�N • 1 � � � �4N • 5 �2 + 8N,

�23�

wherem=0, 1, 2, and 3, counts the four possible values.

B. General caseN, nmax� 1

The size of the block representing the spin-photon states
increases withnmax. For each photon made available to the
spin system, an additional spin will participate in the coop-
erative energy exchange and a new spin-photon state is gen-
erated, as indicated in Fig.1�a�. This effect is exempliÞed in
Fig. 1, at resonance, forN=5 where up to six states are
generated with increasingnmax. Whennmax=5, all spins are
participating and the size of the matrix is bounded at 6� 6.
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Although no new states are generated for values ofnmax
� N, the N+1 eigenvalues will adjust to indicate the Òover-
saturationÓ with photons�as shown with connected dots in
Fig. 1�. Analytically, this effect is shown by Eq.�10� for N
=1 or by replacingN with nmax in the off-diagonal terms
leading to Eqs.�15�, �17�, �20�, and �23� and thus in the
corresponding Rabi splittings.

For large values ofnmax, all Rabi splittings

�	 R = Em+1
�nmax� • Em

�nmax� �24�

are equal to� 2� g� nmax �as shown by vertical arrows in the
example of Fig.1�. However, this transition to equidistance
is not a smooth process. In the following, we show that the
spread in Rabi frequencies becomes maximal atnmax=N and
that a gradual transition toward an equidistant spectrum de-
velops fornmax� N. Difference between consecutive eigen-
values is shown in Fig.2. ForN=10 �Fig. 2�a�� one observes
a spread of Rabi splittings over few units ofg for nmax=N
=10, followed by a collapse on a single-valued Rabi splitting
2� g� nmax �shown by continuous lines in Figs.2�a� and2�b��
for nmax larger than several tens.

An exact diagonalization study forN up to 400 and three
nmax values provides support for a general view of the pro-
cess�Fig. 2�b��. At nmax=N �black dots� deviations from the
2� g� nmax limit �black lines� are maximal and the range of
spread increases proportionally with� N. For nmax=N+250
andN+500 the distribution width of Rabi splittings is highly
reduced. A convergence toward 2� g� nmax is observed espe-
cially at low values ofN �or very largenmax/N ratio�, since in
this limit one approaches the analytical case ofN=1 �Eq.
�11�� .

This convergence corresponds to the energy diagram of
the Rabi oscillation in Eq.�8� in the ESR model, where each
atom interacts with the Þeld individually. The fact that	 R
� � nmax in this limit, resides on the dependenceh0� � nmax. If
the number of photons is large enough,b, b  � �b� , �b  �
� � nmax in Eq. �4�. Thus,h0 in Eqs.�2� and�3� corresponds
to � nmax.

C. Photon transmission spectra: a quantum to
classical transition

To probe theEm
n spin-photon states one could use a low

power beam and analyze the transmitted signal�another op-
tion, demonstrated experimentally in the last section, is to
study the Fourier transform of the coherent emission of an
excited spin-cavity system�. A low power probe could be
used to scan the frequency response of the cavity, after the
introduction ofnmax photons of frequency� �=� 0 at reso-
nance�.

A variable frequency beam, probing after the introduction
of nmax photons, will see the Rabi splittings given by Eq.
�24�. Therefore, in such experiment one should be able to
detect a transition in peak distribution from a large number
of 	 R values to a single-valued transmission peak. By de-
sign, such photon-driven transition cannot be observed atN
=1 but it would require at least several noninteracting spins
coupled tonmax� N photons.

The passage of a system fromnmax to nmax+1 implies an
excitation from one group of eigenstates to the next one, as
sketched in Fig.1�a�. Due to the large number of eigenstates
involved, the distribution of energy differences
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FIG. 1. �a� For each additional photon, a new spin-photon state
is generated, up to a numberN+1. �b� Spin-photon eigenstates for
N=5, at resonance, obtained from diagonalization of blocks limited
by �min�nmax,N� +1� , as sketched in the insert. Fornmax� N, all
N+1 states become equidistant, leading to equal Rabi splittings
�shown by vertical arrows�.
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limit for Rabi splitting, 2� g� nmax, is shown by continuous lines. At
nmax=N the distribution width in Rabi splittings is maximal and it
decreases rapidly with increasingnmax.
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�
 m�m
�nmax� = Em�

�nmax+1� • Em
�nmax� �25�

can be broad. As shown in Fig.3�a� for N=10, the distribu-
tion width is increasing as� nmax. However, only in the vi-
cinity of nmax=N are the values highly dispersed, as shown
by a dense cloud of points atnmax� N in Fig. 3�a�. For large
values ofnmax, and in full agreement with the study of Fig.2,
the 
 m�m

�nmax� values are equally spaced by a Rabi splitting
2� g� nmax.

A different probing method would consist in using the
nmax photons to actually probe the energy levels. An experi-
mental demonstration for one superconducting qubit electri-
cally coupled tonmax=0, . . . ,5 photons has been recently
performed19 �see also Ref.24 for a multiatom experiment�.
In such a case, multiphoton transmission experiments can
probe the energy difference between theEm

nmax andE0
0 �of Eq.

�15��

� � = �Em
nmax• E0

0� /nmax. �26�

Above the transition thresholdnmax� N, the photon fre-
quency thus deÞned becomes gradually insensitive to the dis-
tribution in Rabi splittings due to the 1/nmax factor. A level
diagram with Rabi splittings uniformly spaced by 2� g� nmax
will generate transmission peaks spaced by 2� g/ � nmax. The
linear dependence on 1/ � nmax for nmax� N is shown in Fig.
3�b�, calculated at resonance conditions forN=10. The

gradual passage from the quantum case to the classical ESR
condition �single peak at� =� 0� is visible with the increase
of the electromagnetic intensity.

V. EXPERIMENTAL STUDY OF STRONG COUPLING IN
SPIN SYSTEMS

We demonstrate the strong coupling between an ensemble
of spins s=1/2 and photons using a sample of the well-
known ESR standard material,25 dipheriyl-picri-hydrazyl
�DPPH�. For an optimized cavity coupling, sample position-
ing, and size, we have been able to induce a sizeable Rabi
splitting observed for a series of Zeeman spin splittings� 0.

A 1-� s-long microwave pulse pumps a large number of
photons into a cylindrical cavity operated in mode TE011.
When the microwave is switched off, the cavity is coherently
emitting photons corresponding to its own eigenmodes�phe-
nomenon known as cavity ringing�. This ringing is detected
by a homemade heterodyne analyzer. The experiment is per-
formed at room temperature. To ease the distinction between
the photons of the pump pulse and cavityÕs own emitted
photons after pumping, the pump is detuned by 50 MHz
from cavityÕs resonance� /2� =9.624 GHz. The Fourier
transform of the coherent oscillations is shown in Fig.4�a�
with the frequency axis shifted by� /2� for clarity. The
sample-loaded, no Þeld� � 0=0� oscillation shows only the
cavity signature, located at� /2� .

For an applied magnetic Þeld� 0Hz=� � /gs� B, with gs
=2, the spin system is in resonance with the cavity� � 0=� � .
The eight traces of Fig.4�a� are for Þelds within� 0.4 mT
of the resonance condition. The Fourier transform of the
coupled spin-photon oscillations show peaks, indicated by
vertical marks in Fig.4�a�. The peaks location, relative to
cavityÕs resonance� /2� , is shown in Fig.4�b�, as a function
of the Þeld detuning� 0� Hz=• �
 /gs� B.
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FIG. 3. �a� Representation of all possible excitations fromnmax
to nmax+1, calculated at resonance, forN=10. The corresponding
energy splittings are closely packed in the transition regionnmax
� N and became equally spaced by 2� g� nmax for nmax� N. �b� Mul-
tiphoton, nonlinear resonances as a function of 1/ � nmax. The linear
dependence at highnmax indicates the emergence of an equally
spaced Rabi spectra and the convergence to a single peak indicates
the gradual passage to a classical ESR, single-peaked, resonance
condition.
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FIG. 4. �Color online� � a� Fourier transform of cavity ringing,
measured at room temperature for several magnetic Þeld values
around the resonance condition. Frequencies are relative to the
sample-loaded cavity resonance, in absence of applied Þeld. The
observed two peaks are indicated by vertical marks.�b� Peaks po-
sition as a function of detuning Þeld� 0� Hz. The dashed lines indi-
cate the classical level diagram, whereas the continuous line Þt�Eq.
�27�� shows a measured Rabi splitting of 10.9 MHz.
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