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We study the energy level structure of the Tavis-Cumming model applied to an ensemble of independent
magnetic spins s=1 /2 coupled to a variable number of photons. Rabi splittings are calculated and their
distribution is analyzed as a function of photon number nmax and spin system size N. A sharp transition in the
distribution of the Rabi frequency is found at nmax�N. The width of the Rabi frequency spectrum diverges as
�N at this point. For increased number of photons nmax�N, the Rabi frequencies converge to a value propor-
tional to �nmax. This behavior is interpreted as analogous to the classical spin-resonance mechanism where the
photon is treated as a classical field and one resonance peak is expected. We also present experimental data
demonstrating cooperative, magnetic strong coupling between a spin system and photons, measured at room
temperature. This points toward quantum computing implementation with magnetic spins, using cavity
quantum-electrodynamics techniques.
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I. INTRODUCTION

Interactions of quantum systems with electromagnetic ex-
citations are at the core of quantum information processing.
Using photons and photonic entanglement, qubits can be de-
tected and manipulated, and quantum information can, in
principle, be transferred over long distances.1 Of particular
interest are the resonant modes in electromagnetic cavities,
which have the potential of inducing a strong coupling re-
gime such that the interaction outlast both photon’s decay
and qubit decoherence times.2,3 Following the work of
Dicke4 on multiatom superradiance, the case of a single atom
in interaction with n photons has been studied theoretically
by Jaynes and Cummings,5 and later on generalized6–9 for a
number of N otherwise noninteracting atomic systems. Other
theoretical studies, applied to solid state systems,10 have in-
cluded environmental effects as well �e.g., in semiconducting
materials11,12� or ensemble-locking in a giant spin.13 Experi-
mentally, the phenomena of strong coupling regime has been
reached by using the electric field component of the electro-
magnetic excitations: in one or more atomic systems,14,15

semiconductors,16 and superconducting qubits in interaction
with one17 or more photons.18,19 These studies prove the ap-
pearance of the so-called vacuum-field Rabi splitting �VRS�
in the absorbtion peak of a probing photon field.

In contrast, achieving large magnetic coupling between a
photon and a quantum spin, has been explored to a lesser
extent, due to the typical smallness of the magnetic compo-
nent �B field� of the electromagnetic field. However, since
spin-based qubits do reveal significant coherence times for
temperatures up to ambient value,20,21 the issue of coupling
spin qubits to photons for data manipulation and transfer
becomes of increasing interest. In the usual magnetic reso-
nance methods, e.g., electron spin resonance �ESR�, the ab-
sorption measurement of the electromagnetic field is related
to the energy structure of the spin system. Feedback effects
of the B-field component on the spins are ignored which

means that for a two-level system there is one absorbtion
peak at a frequency matching the levels separation. On the
other hand, as mentioned above in the case of electrical cou-
pling, photon absorption can probe the quantum mechanical
interaction between the quantum system and the cavity pho-
tons which leads to VRS. In this paper, we will study the
relation between these two cases, one classical and the other
one quantum, by comparing the effects of magnetic coupling
between N noninteracting spins s=1 /2 and the external ra-
diation field. The transition between the classical and quan-
tum case will be analyzed as well.

Because the wavelength of the external field is large com-
pared with the distances between spins, all the spins interact
with a single mode of electromagnetic field. In the classical
case of spin resonance, the system Hamiltonian is given by
HS=HZ0+Hac where HZ0 is the Zeeman coupling to a static
field Hz

HZ0 = − �0Hz�
i=1

N

mi
z =

��0

2 �
i

N

�i
z, �1�

where mz=−gs�B�i
z /2 gives the magnetic moment of spin

i �gs is the g-factor, equal to 2 for a free spin and �B is the
Bohr magneton� and ��0 is the Zeeman splitting generated
by Hz. The term Hac represents the spin coupling to an alter-
nating B-field component h0 oscillating with a frequency
� /2�. Using the notation �	R=�0h0gs�B /2 and the Pauli
projection and raising/lowering operators this term is written
as

HacR =
1

2
�	R�

i=1

N

�ei�t�i
+ + e−i�t�i

−� �2�

for a rotating B field or, for an uniaxial B field, as
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HacX = �	Rcos��t��
i=1

N

�i
x. �3�

When treating the radiation field quantum mechanically, as
in the Jaynes-Cummings model, the spin-photon coupling is
described by a parameter g, here assumed to be the same for
all spins

H = HZ0 + �g�
i

N

�b�i
+ + b†�i

−� + ��b†b �4�

with b, b† the photon annihilation/creation operators. The
amplitude of the electromagnetic field is a dynamical vari-
able but not an external parameter as in the case of Eq. �2� or
�3�. Namely, the strength of the electromagnetic field is given
by b†b in the quantum mechanical model in Eq. �4� while it
is given by h0 in the classical models in Eqs. �2� and �3�.

II. COMPLEX SUSCEPTIBILITY IN THE LINEAR
RESPONSE THEOREM

In the linear response theory,22,23 the imaginary part of the
complex susceptibility is given by


���� =
1 − e−���

2
�

−�

�

�Mx�0�Mx�t��0e−i�tdt , �5�

where Mx= 1
2�i�i

x, �¯ �0=Tr¯e−�HZ0 /Tre−�HZ0, �=1 /kBT,
kB is the Boltzmann constant, and T is system’s temperature.
This gives a coefficient of proportionality between the in-
duced quantity �Mx� and the field h0 at h0=0. The eigenval-
ues of HZ0 are simply given by Ek=k��0, k=−N , ¯ ,N,
each of which is NCk=N ! /k ! �N−k�! times degenerate. There
is only one energy difference E=��0 that has nonzero ma-
trix element of Mx. In this case, each spin interacts only with
the field, individually. Thus, we have a single peak in 
����
at �=�0. If we include some interactions among spins, such
as the dipole-dipole interactions, the degeneracy of the en-
ergy levels of the N spin system would be resolved, and
additional peaks in 
 � ��� are expected.

Quantum dynamics of paramagnetic spins under an ac field:
Rabi oscillation

If we consider the dynamics of spins in the ESR Hamil-
tonian HS, the total magnetization shows the so-called Rabi
oscillation. By transforming the wave function 	��t�� as

	��t�� = ei�1/2��0t�z	��t�� 
 U	��t�� �6�

the rotating frame version of HS is given by

UHSU−1 =
1

2
�	R�

i

N

��i
+ + �i

−� = �	R�
i

N

�x �7�

at resonance. In this representation, the z component of the
magnetization rotates around the x axis with the angular ve-

locity �̇=	R, which is the Rabi oscillation. It should be
noted that the phase oscillates with the angular frequency �0,
which causes a rotation of the magnetization around the z

axis in the laboratory frame. The effective eigenvalues of
Hamiltonian �7� are given by

Ẽk = k�	R − N � k � N , �8�

which are equidistant �Ẽk=�	R� and again we consider
that each spin interacts only with the field, individually.

III. QUANTUM TREATMENT OF SPIN-PHOTON
COUPLING

Now we study the case where the interaction between
spins and photons is treated quantum mechanically. We start
by reviewing the energy diagram of model in Eq. �4�.

A. Case of single spin N=1

First, we consider the case of N=1. We adopt the basis
	n ,�� where n denotes the number of photons in the cavity
and �=− /+ shows the ground/excited state as an eigenvalue
of �z. The matrix of H is separated into 2�2 blocks for each
pair �	n ,−� , 	n−1,+��, given by


− ��0

2
+ n�� �g�n

�g�n
��0

2
+ �n − 1���� . �9�

The eigenstates are given by

E� = ���n −
1

2
� � �

�

2
,

	��� =
1
�2
� �1 � /�

��1 � /�
� , �10�

where =�−�0 and �=�2+4ng2. At resonance �=�0, the
above reduces to

E� = �n −
1

2
���0 � �g�n ,

	��� =
1
�2

� 1

�1
� . �11�

Note that all blocks have the same photon number + magne-
tization constant,7 C=n−1 /2= �n−1�+1 /2.

B. Case of a spin ensemble N�1

For N�1, the working basis becomes 	n , ��1¯�N��
where �i=− /+ shows the ground/excited state of ith spin, as
an eigenvalue of �i

z. When photons are absorbed or emitted
by the spin ensemble, the quantity C=n+M is conserved,6,7

with M =m−N /2 the ensemble magnetization, m the number
of excited spins, and n the number of remaining photons.
The Hilbert space corresponding to all m values is NC0+ ¯

+NCN=2N in length. Further division in independent sub-
blocks can be done if one use a total spin representation.7

The system Hamiltonian can be written as
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H =
��0

2
Sz + ��b†b + �g�bS+ + b†S−� �12�

with Sz,+,−=�i
N�i

z,+,−. The Hamiltonian commutes with the
total spin �Sx�2+ �Sy�2+ �Sz�2 and can be further separated into
smaller blocks, classified by the total spin S. When all spins
are in the ground state, the total spin is maximum, S=N /2.
From here on we discuss the case S=N /2 since further pho-
ton excitations and emissions will selectively couple states
within this subspace only. The subspace can be further lim-
ited if there are not enough photons to flip all the spins in the
system: m ranges from 0 to min�N ,nmax� with nmax=n+m the
number of photons for Sz=−N /2. Using a basis �	m� ,0�m
�min�N ,nmax�� and the relation �S=N /2�

S+	S,M� = �S�S + 1� − M�M + 1�	S,M + 1� = ��m + 1��N − m�

�	S,M + 1� �13�

the diagonal and off-diagonal terms of Eq. �12� are

Hm,m = �m − N/2���0 + �nmax − m��� ,

Hm,m+1 = �g�nmax − m��m + 1��N − m� . �14�

At resonance, the diagonal term becomes Hm,m= �nmax
−N /2���0 and is independent on m.

IV. EIGENVALUES FOR AN ENSEMBLE OF SPINS

For a total spin S=N /2, one expects N+1 eigenstates of
which N−nmax are diagonal spin states and nmax+1 are
coupled spin-photon states �if nmax�N, all N+1 states are
coupled�.

A. Analytical expressions for nmax=0–3

Analytical expressions for eigenvalues Em
�nmax� are listed

below for few simple cases.

1. Case nmax=0

In the vacuum-field where no photon exist when all spins
are in the ground state, there is a unique state and its eigen-
value is given by

E0
�0� = −

��0N

2
. �15�

2. Case nmax=1

In this case there are two coupled states: 	n=1,m=N� and
	n=0,m=N−1�. The Hamiltonian of this block is

��0�−
N

2
� + �� g�N

g�N ��0�−
N

2
+ 1� �	n = 1,m = 0�

	n = 0,m = 1�

= ��0�−
N

2
+ 1� + ���� − �0� g�N

g�N 0
� �16�

and the eigenenergies are given by �m=0,1�

Em
�1�/� = �0�−

N

2
+ 1� +



2
+ �m −

1

2
��2 + 4Ng2. �17�

The VRS is given by

E1
�1� − E0

�1� = ��2 + 4Ng2 �18�

and represents the rate at which the spin system coherently
exchanges one photon with the radiation field.

3. Case nmax=2

The spin-photon states span over three states: 	n=2,m
=N�, 	n=1,m=N−1�, and 	n=0,m=N−2�. At resonance 
=0, the Hamiltonian is given by

��0�2 −
N

2
� +  0 �g�2N 0

�g�2N 0 �g�2�N − 1�
0 �g�2�N − 1� 0

�
�19�

and the eigenvalues are given by �m=0,1 ,2�

Em
�2�/� = �0�−

N

2
+ 2� + �m − 1�g�4N − 2. �20�

Here, the Rabi frequencies are degenerate

E2
�2� − E1

�2� = E1
�2� − E0

�2� = �g�4N − 2. �21�

4. Case nmax=3

Following a similar approach as for nmax=2, the Hamil-
tonian at resonance is given by

��0�3 −
N

2
�

+
0 �g�3N 0 0

�g�3N 0 �g�4�N − 1� 0

0 �g�4�N − 1� 0 �g�3�N − 2�
0 0 �g�3�N − 2� 0

�
�22�

with eigenvalues

Em
�3�/� = ��0�− N/2 + 3� � g�5�N − 1� � ��4N − 5�2 + 8N ,

�23�

where m=0, 1, 2, and 3, counts the four possible values.

B. General case N, nmax�1

The size of the block representing the spin-photon states
increases with nmax. For each photon made available to the
spin system, an additional spin will participate in the coop-
erative energy exchange and a new spin-photon state is gen-
erated, as indicated in Fig. 1�a�. This effect is exemplified in
Fig. 1, at resonance, for N=5 where up to six states are
generated with increasing nmax. When nmax=5, all spins are
participating and the size of the matrix is bounded at 6�6.
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Although no new states are generated for values of nmax
�N, the N+1 eigenvalues will adjust to indicate the “over-
saturation” with photons �as shown with connected dots in
Fig. 1�. Analytically, this effect is shown by Eq. �10� for N
=1 or by replacing N with nmax in the off-diagonal terms
leading to Eqs. �15�, �17�, �20�, and �23� and thus in the
corresponding Rabi splittings.

For large values of nmax, all Rabi splittings

�	R = Em+1
�nmax� − Em

�nmax� �24�

are equal to �2�g�nmax �as shown by vertical arrows in the
example of Fig. 1�. However, this transition to equidistance
is not a smooth process. In the following, we show that the
spread in Rabi frequencies becomes maximal at nmax=N and
that a gradual transition toward an equidistant spectrum de-
velops for nmax�N. Difference between consecutive eigen-
values is shown in Fig. 2. For N=10 �Fig. 2�a�� one observes
a spread of Rabi splittings over few units of g for nmax=N
=10, followed by a collapse on a single-valued Rabi splitting
2�g�nmax �shown by continuous lines in Figs. 2�a� and 2�b��
for nmax larger than several tens.

An exact diagonalization study for N up to 400 and three
nmax values provides support for a general view of the pro-
cess �Fig. 2�b��. At nmax=N �black dots� deviations from the
2�g�nmax limit �black lines� are maximal and the range of
spread increases proportionally with �N. For nmax=N+250
and N+500 the distribution width of Rabi splittings is highly
reduced. A convergence toward 2�g�nmax is observed espe-
cially at low values of N �or very large nmax /N ratio�, since in
this limit one approaches the analytical case of N=1 �Eq.
�11��.

This convergence corresponds to the energy diagram of
the Rabi oscillation in Eq. �8� in the ESR model, where each
atom interacts with the field individually. The fact that 	R

��nmax in this limit, resides on the dependence h0��nmax. If
the number of photons is large enough, b, b†→ �b�, �b†�
→�nmax in Eq. �4�. Thus, h0 in Eqs. �2� and �3� corresponds
to �nmax.

C. Photon transmission spectra: a quantum to
classical transition

To probe the Em
n spin-photon states one could use a low

power beam and analyze the transmitted signal �another op-
tion, demonstrated experimentally in the last section, is to
study the Fourier transform of the coherent emission of an
excited spin-cavity system�. A low power probe could be
used to scan the frequency response of the cavity, after the
introduction of nmax photons of frequency � �=�0 at reso-
nance�.

A variable frequency beam, probing after the introduction
of nmax photons, will see the Rabi splittings given by Eq.
�24�. Therefore, in such experiment one should be able to
detect a transition in peak distribution from a large number
of 	R values to a single-valued transmission peak. By de-
sign, such photon-driven transition cannot be observed at N
=1 but it would require at least several noninteracting spins
coupled to nmax�N photons.

The passage of a system from nmax to nmax+1 implies an
excitation from one group of eigenstates to the next one, as
sketched in Fig. 1�a�. Due to the large number of eigenstates
involved, the distribution of energy differences
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FIG. 1. �a� For each additional photon, a new spin-photon state
is generated, up to a number N+1. �b� Spin-photon eigenstates for
N=5, at resonance, obtained from diagonalization of blocks limited
by �min�nmax,N�+1�, as sketched in the insert. For nmax�N, all
N+1 states become equidistant, leading to equal Rabi splittings
�shown by vertical arrows�.
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FIG. 2. Rabi splittings calculated at resonance, as difference
between consecutive eigenvalues, for �a� N=10 and �b� N up to 400
and nmax=N �dots�, N+250 �squares�, N+500 �triangles�; the N=1
limit for Rabi splitting, 2�g�nmax, is shown by continuous lines. At
nmax=N the distribution width in Rabi splittings is maximal and it
decreases rapidly with increasing nmax.
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�m�m
�nmax� = Em�

�nmax+1� − Em
�nmax� �25�

can be broad. As shown in Fig. 3�a� for N=10, the distribu-
tion width is increasing as �nmax. However, only in the vi-
cinity of nmax=N are the values highly dispersed, as shown
by a dense cloud of points at nmax�N in Fig. 3�a�. For large
values of nmax, and in full agreement with the study of Fig. 2,
the m�m

�nmax� values are equally spaced by a Rabi splitting
2�g�nmax.

A different probing method would consist in using the
nmax photons to actually probe the energy levels. An experi-
mental demonstration for one superconducting qubit electri-
cally coupled to nmax=0, . . . ,5 photons has been recently
performed19 �see also Ref. 24 for a multiatom experiment�.
In such a case, multiphoton transmission experiments can
probe the energy difference between the Em

nmax and E0
0 �of Eq.

�15��

�� = �Em
nmax − E0

0�/nmax. �26�

Above the transition threshold nmax�N, the photon fre-
quency thus defined becomes gradually insensitive to the dis-
tribution in Rabi splittings due to the 1 /nmax factor. A level
diagram with Rabi splittings uniformly spaced by 2�g�nmax
will generate transmission peaks spaced by 2�g /�nmax. The
linear dependence on 1 /�nmax for nmax�N is shown in Fig.
3�b�, calculated at resonance conditions for N=10. The

gradual passage from the quantum case to the classical ESR
condition �single peak at �=�0� is visible with the increase
of the electromagnetic intensity.

V. EXPERIMENTAL STUDY OF STRONG COUPLING IN
SPIN SYSTEMS

We demonstrate the strong coupling between an ensemble
of spins s=1 /2 and photons using a sample of the well-
known ESR standard material,25 dipheriyl-picri-hydrazyl
�DPPH�. For an optimized cavity coupling, sample position-
ing, and size, we have been able to induce a sizeable Rabi
splitting observed for a series of Zeeman spin splittings �0.

A 1-�s-long microwave pulse pumps a large number of
photons into a cylindrical cavity operated in mode TE011.
When the microwave is switched off, the cavity is coherently
emitting photons corresponding to its own eigenmodes �phe-
nomenon known as cavity ringing�. This ringing is detected
by a homemade heterodyne analyzer. The experiment is per-
formed at room temperature. To ease the distinction between
the photons of the pump pulse and cavity’s own emitted
photons after pumping, the pump is detuned by 50 MHz
from cavity’s resonance � /2�=9.624 GHz. The Fourier
transform of the coherent oscillations is shown in Fig. 4�a�
with the frequency axis shifted by � /2� for clarity. The
sample-loaded, no field ��0=0� oscillation shows only the
cavity signature, located at � /2�.

For an applied magnetic field �0Hz=�� /gs�B, with gs
=2, the spin system is in resonance with the cavity ��0=��.
The eight traces of Fig. 4�a� are for fields within �0.4 mT
of the resonance condition. The Fourier transform of the
coupled spin-photon oscillations show peaks, indicated by
vertical marks in Fig. 4�a�. The peaks location, relative to
cavity’s resonance � /2�, is shown in Fig. 4�b�, as a function
of the field detuning �0�Hz=−� /gs�B.
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energy splittings are closely packed in the transition region nmax

�N and became equally spaced by 2�g�nmax for nmax�N. �b� Mul-
tiphoton, nonlinear resonances as a function of 1 /�nmax. The linear
dependence at high nmax indicates the emergence of an equally
spaced Rabi spectra and the convergence to a single peak indicates
the gradual passage to a classical ESR, single-peaked, resonance
condition.
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observed two peaks are indicated by vertical marks. �b� Peaks po-
sition as a function of detuning field �0�Hz. The dashed lines indi-
cate the classical level diagram, whereas the continuous line fit �Eq.
�27�� shows a measured Rabi splitting of 10.9 MHz.
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In a classical ESR experiment, for instance using the
DPPH as a field calibration standard, one expects energy
levels that follow the dashed lines in Fig. 4�b�. In particular,
the cavity peak is visible and changes abruptly in size but not
location, when the resonance condition is met �at the inter-
section of the dashed lines�.

In our experimental conditions, due to the spin-photon
strong coupling, one observes two peaks separated by the
characteristic Rabi splitting. The size of the splitting can be
attributed to the interaction between a group of N spins and a
single photon, although the cavity contains a large number of
nmax photons. A possible explanation resides on the exis-
tence, in standard ESR experiments, of the so-called “spin
packets” characterized by a coherence time T2 and grouping
an average number of spins N. The T2 and cavity decay times
can be estimated from the peak widths of �6 MHz and 2.7
MHz at �=�0 �resonance� and �0=0 �no field� conditions,
respectively: T2=170 ns and �cav=370 ns.

Consequently, the cavity photon depletion during emis-
sion, marks the transition between the E0,1

�1� and E0
�0� levels of

Eqs. �17� and �15�. Cavity ringing shows coherent oscilla-
tions with the frequencies �e0,1 /2�, given by

�e0,1 − � = −


2
�

1

2
�2 + 	R

2 �27�

on which the continuous lines of Fig. 4�b� are based. The fit
procedure leads to a Rabi splitting of 	R /2�=10.9 MHz.
We note that a detailed knowledge of the g and N parameters
would require an on-chip type of experiment, at low tem-
peratures, to maximize the spin packet size and to ensure a
precise knowledge of spin position.26 In a single photon pic-
ture, and knowing the cavity volume ��50 cm3�, we esti-
mate the number of spins contributing to 	R to be on the
order of 1020. Our data demonstrate the spin-photon strong

coupling and also provide the mainframe to study experi-
mentally the transition shown in Fig. 3�b�. The role of other
factors in the spread of Rabi splittings, such as: dipolar or
hyperfine interactions, local anisotropic crystal fields, and the
size of the sample vs size of a cavity �mode� can be studied
as well. At the same time, the possibility to entangle spins
and photons inside a cavity comes in strong support for the
implementation of quantum computing algorithms by using
magnetic spins and on-chip quantum electrodynamics meth-
ods.

In conclusion, we present a study of cooperative spin-
photon interaction leading to a transition between a
quantum-type Rabi spectra to a classical ESR spectra. The
transition requires a number of spins N�1 and the possibil-
ity to gradually increase the number of photons. When the
later is close to N, a dense Rabi spectra is numerically ob-
served. For a large number of photons, the spectra gradually
become equidistant and the resonance peaks converge to-
ward the classical single-peaked, ESR resonance. The theo-
retical model is complimented by an experimental demon-
stration of the spin-photon strong coupling regime, which
uses the B-field component of an electromagnetic mode in a
cylindrical cavity.

Note added. Recently, two similar experimental results
have appeared.27,28
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