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A Neural Network Model for Temporal Sequence Learning 
and Motor Programming 

BERNARD ANS, 1 YVES COITON, 2 JEAN-CLAUDE ÛILHODES, 2 AND JEAN-LUC VELAY 2

'Université Pierre Mendès France, Grenoble, and 2Université de Provence, Marseille 

Abstract-A neural network mode/ for fast learning and storage of temporal sequences is presented. The recall of 

a learned sequence is triggered by the occurrence of an item relating to its identity, and one of the main distinctive 

features of this mode! is that the speed at which a sequence is repeated can be freely modulated by a contrai 
subsystem. The possible applications of the mode! are illustrated by applying it to the production of motor forms. 

It is shown that any spatial shape memorized in exteroceptive terms can be reproduced in terms of movement by 
any of the effector systems of the body, and in particular by a simulated jointed arm, at any point in its working 

space and at any suitable size scale. Our theoretical approach reinforces the idea that the structures responsible for 

planning a movement in the central nervous system might be large/y independent of the motor systems performing 

this movement. 

Keywords-Dynamic memory, Motor program, Motor shape, Neural network, Pointing movement, Temporal 

sequence, Temporary memory, Tracking movement. 

1. INTRODUCTION

Most of the existing neural network models for asso­
ciative memory (Hinton & Anderson, 1981; Rumelhart 
& McClelland, 1986; Grossberg, 1988; Kohonen, 1988) 
have been of a static type. They have generally been 
designed to produce a single learned response to a given 
trigger stimulus, even if several processing cycles may 
be necessary for the expected response to stabilize 
completely. On the other band, there exists a family of 
memory models of a more dynamic type, in which a 
specific temporal sequence of expected events is recalled 
in response to a single trigger stimulus or from a "seed­
ing" of the system. However, this family of neural net­
work models for temporal sequence learning and recall 
( e.g., Kohonen, 1977; Willwacher, 1982; Jordan, 1986; 
Dehaene, Changeux, & Nadal, 1987; Elman, 1988; Ans, 
1990b; Reiss & Taylor, 1991 ) , or dynamic memories 
in short, is not as large as that of static models because 
the temporal modelling of neural processes is not easy. 
This is nevertheless a really fundamental line of re-
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search, if only because in ecological situations, the con­
trolled production of a coherent chain of events in re­
sponse to the requirements of the environmental con­
text is a regular and by no means an exceptional 
occurrence. At the more theoretical level, the exact 
knowledge of the working of a connectionist system 
consisting of "neurons" and "synapses," which is able 
to perform a coherent sequence of "instructions" in 
response to a specific execute command, should be of 
great potential value as a means of understanding how 
sequential programs are actually implemented at the 
neurobiological level. 

The existing connectionist models for dynamic 
memories are varied in regard to their degree of bio­
logical realism and their performances. One model close 
to neurobiology is that developed by Dehaene et al. 
( 1987). The architecture of this model is based on for­
mal synaptic triads that are responsible for the hetero­
synaptic regulation ( Heidmann & Changeux, 1982) and 
the synaptic efficacies change in accordance with Hebb's 
rule ( Hebb, 1949). From the behavioural point of view 
this model is of the selectionist type, which means that 
although the network is initially capable of sponta­
neously producing a very large variety of sequences 
( pre-representations), only those reinforced by imita­
tive learning will persist, and the remainder will tend 
to disappear. Behaviour of this type bas been studied 
with special reference to the acquisition of bird sangs 
(Konishi, 1985). Although this approach is particularly 



attractive and well suited to the task in question, it is 

less appropriate when the sequences to be learned are 

not part of a "genetically" predetermined repertoire 
and when the model is constantly faced with navel sit­
uations that have to be memorized. 

The model architecture designed by Kohonen 

( 1977) is a prototype that bas inspired most subsequent 

models in some way or another. Kohonen's model in­

volves an associative memory that stores the relation 
between the current item in a sequence and the ordered 

succession of its K predecessors. This recent sequence 

history is obtained by delaying the output from the 

associative memory by introducing K lag registers that 

form a spatial buffer. The length of the temporal span, 

that is, the size of the time window encompassing the 

current sequence history within the spatial buffer, is 
therefore fixed and determined by the number of lag 

registers used. In addition, the associative layer records 
the general context surrounding the sequence being 

processed that will subsequently serve to trigger the 

sequence recall as well as to salve some of the problems 

inherent to distributed memory systems, centering on 

the interferences between the sequences. Kohonen 

clearly set out the main principles underlying his one­

layer model, without specifying, however, exactly which 

type of learning rule be uses. lt is hence difficult to 

assess the efficiency of his model. 

Among the descendants of this model, in which the 

sequential production of items is governed by their re­

cent history and their surrounding context, the one de­

veloped by Jordan ( 1986) is characterized by the 
method used for short-term storage. The current se­

quence history is set up within a single layer forming 

a feedback loop: the state of the layer at instant t depends 

on its own previous state at instant l
n
-• and on the item 

in the sequence at that previous instant. By a recursive 

process, the time span encompasses a recent history, 

the length of which depends on the structure of the 

sequence being currently processed. The author uses a 

layer of hidden units in which the current sequence 

history is combined with the context involved in the 
processing, which is conceived of as a "plan." The 

weights of the connections in hidden and output layers 
change according to the back propagation algorithm 
( Le Cun, 1986; Rumelhart, Hinton, & Williams, 

1986). The model proposed by Jordan, like that by 

Elman ( 1988), which is an interesting variation on the 
former, is efficient in view of its long-term storage ca­

pacity. This quality is in fact due to the learning algo­
rithm on which the processing is based, which bas been 

intensively used elsewhere precisely because of its ef­
ficiency, despite the fact that it is reputed not to be a 

very realistic representation of neurobiological pro­
cesses ( Grossberg, 1987b; Crick, 1989; Hinton & Shal­
lice, 1991; Reiss & Taylor, 1991 ) . And in the present 

paper, where we propose a neuromimetic model for 
temporal sequence learning and recall, we do not use 

a learning method ofthis type because one of our main 
aims here is to keep as close as possible to the well­
known basic neural processes. 

This principle ofneurobiological plausibility is par­

ticularly adopted in Reiss and Taylor ( 1991 ) where back 
propagation is not consequently used. The authors 

propose bath a theoretical analysis and a set of simu­

lations of a model for temporal sequence storage in 
which the main distinctive feature is that the short­

term storage of the current sequence history is obtained 
without using spatial buffering or a single layer with 

recurrent connections. lt is built up within a layer of 
leaky integrator neurons, with a range oftime constants, 

that store directly on their membrane a representation 

of the succession of their recent inputs. This model 
features a number of required properties, in particular: 

the sequences are quickly learned because there are no 

hidden layers to slow down learning; the system leads 
to recall in which there is no distortion of the tempor­

ality of the patterns forming sequences ( the lengths of 

time each pattern was presented during the learning 

phase) and in which disambiguation is achieved ( in 

that the sequence ABCBD . . . can be reliably recalled 

in spite of the fact that the pattern B (ambiguous) could 

lead either to C or to D). The other purpose of this 
paper is to evaluate the relevance of the model to un­

derstanding hippocampal structure and activity. 

There is one natural ability that surprisingly bas 

rarely been taken into account in the literature, namely, 

the ability to recall a sequence at a speed that can be 

modulated in the course of time. This property is nev­
ertheless perfectly commonplace: we are able, for in­
stance, to sing a tune we have learned with a variety 

of different tempos, or we can even choose to hold a 

single note in the sequence for a fairly long time, and 

subsequently, resume the normal course of the recall. 

The model of Reiss and Taylor ( 1991 ) would be able 

to account for the recall of a sequence at a modulated 

speed, and to continue a sequence that had been "held" 

at some point, except at ambiguous pattern points. The 

neural network model for temporal sequence storage, 

which is presented here, possesses the same set of gen­
eral required properties as found in the model ofReiss 

and Taylor ( we note, in particular, the use of the same 

realistic learning rule that achieves the same storage 

properties); but furthermore, the model we propose 

can recall a sequence at a freely modulated speed even 
at ambiguous pattern points, and gives an explicit 

neural implementation of this commonplace ability. 
This can be achieved because ail the layers of our model 
are made up of"winner take ail" (WTA) clusters with 
robust self-sustained states whose updating frequency 
is regulated by a common contrai module. In the event 

of the output of the system being maintained during 
recall at a given pattern, then the specific history of this 
pattern is self-sustained and entirely preserved in a 
temporary memory layer. On the basis of this nonre-



stricted temporal context, recall can resume whether 

the held pattern was ambiguous or not. In addition one 

of the other aims of this paper is precisely to show that 

the explicit neural modelling of the output speed control 

of a temporal sequence may be crucial in understanding 

the basic processes that determine the size of the spatial 

forms produced by living sensorimotors systems. 

In Section 2 we give a detailed description of our 
neural network model for temporal sequence storage, 
leaving aside its potential applications; this model is 
partly based on an original architecture briefly de­
scribed in a previous paper ( Ans, 1990b). 

The general dynamic memory model will be applied 
to the production of motor sequences in Section 3. 

Most of our everyday gestures require the partici­
pation of numerous effectors that are coordinated in 
both time and space. Sorne of these movements, such 
as those involved in locomotion are highly automatized 
( Shik, Severin, & Orlovskii, 1966 ) : in this case they 
call on a specific set of effectors and are largely con­
trolled by subcortical structures. Motor activities of 
other types, such as writing and drawing, for example, 
rely more strongly on cortical structures and are not 
as strictly linked to one particular set of effectors. 
Movements of the latter type are probably based on 
centrally represented motor programs ( Keele, Cohen, 
& Ivry, 1990), the spatiotemporal characteristics of 
which are invariable (Viviani & Terzuolo, 1980). These 
"motor forms" can moreover be produced in various 
formats and sizes without undergoing any change in 
their characteristic basic geometrical proportions 
(Bernstein, 1967). Last, these motor sequences can be 
repeated using a different set of effectors from those 
with which the movement was initially leamed. For 
example, a child who bas leamed to write on a hori­
zontal sheet of paper, using mainly bis fingers and wrist, 
will also be spontaneously able to write on a vertical 
blackboard, using bis wrist, elbow, and shoulder mus­
cles. These motor behaviours are in accordance with 
the hypothesis that the structure responsible for plan­
ning a movement may be largely independent of the 
motor system performing this movement. 

Dynamic memories seem to provide a suitable rep­
resentation for the structures that may be at the root 
of the movement planning. The undedicated dynamic 
memory model, described in Section 2, was subse­
quently coupled with a sensorimotor system capable 
of performing goal-directed arm movements. This sys­
tem was given the neuromimetic sensorimotor archi­
tecture we developed separately in a previous modelling 

study on goal-directed movements ( Coiton, Gilhodes, 
Velay, & Roll, 1991; Gilhodes, Coi ton, & Velay, 1991 ) . 
It consists of a Kohonen layer ( Kohonen, 1988) where 
sensory information of two types is combined in a 
functional map. This sensory layer controls a motor 
layer that drives the effectors of either a numerically 
simulated arm or an artificial jointed arm. After a 

leaming phase, the arm is able to perform movements 

aimed toward either a fixed target ( pointing move­

ments) or a moving target ( tracking movements). The 
coupling between the dynamic memory model and the 
sensorimotor system was achieved by means of a neu­
romimetic interfacing module. 

2. A NEUROMIMETIC MODEL

FOR DYNAMIC MEMORY

2.1. General Description of Model 

The model, which is schematized in Figure 1, was de­
signed to be able to leam, memorize, and recall tem­
poral sequences. It consists essentially of five layers, the 
architecture and working principles of which will be 

described in detail in Section 2.2. The inputs and out­
puts of these layers consist of multidimensional patterns 
with components corresponding to the mean firing rate 
of real neurons. The architecture receives two main 

input patterns with either graded or discrete values: the 
first input, Z(t), represents a temporal sequence of 

patterns that requires leaming, and the second input, 
ID, relates to the identity of the ongoing sequence (e.g., 

its "name," or more generally, its surrounding context). 
This identification key bas to be maintained constantly 

throughout the processing (leaming and recall) of its 
associated sequence Z(t). 

During the learning phase, the input layers F and C
recode the input patterns Z(t) and ID, transforming 

them into binary valued patterns. The activity pattern 

ID 

······ ·< I 

/,.�------� ..
..

.. .. _ 

<( A ) 
·\.. /' 

FIGURE 1. The architecture of the temporal sequence-leaming 
model. Each rectangular module is a layer consistlng of units 
( small circles) arranged in separate clusters ( enclosed units). 
To lllustrate this, the number of units per cluster and the number 
of clusters in each layer were arbitrary chosen. ln each cluster, 
only one unit is active ( black circle) and the others are sllent 
( white circles). The input connectivity to all the layera is of the 
distributed type, except for that from F to S, which is of a speciflc 
type (heavy arrow). 



F( t) of layer F is transmitted topographically to layer 
S ( these two layers both have the same structure) via 
strong specific excitatory connections, which leads to 

S(t) = F(t). Hence the temporal sequence S(t) oc­

curring in layer S is a copy of F( t) and conveys in a 

recoded form the original input sequence Z(t). Due 
to the intervention of the time-lag modules R, the cur­
rent state of layer Bis a global representation B(t) of 
the states preceding the current state S(t) of layer S 

within a variable time window: layer B is a kind of 
temporary memory that preserves the current history 

of the sequence S(t). 
Layer G combines this current history B( t) with the 

constant activity pattern C identifying the sequence 
being processed. Then layer S stores the association 
between its present state S(t) and the pattern G(t) rep­

resenting its history in the light of the sequence iden­
tifier. Severa! sequences, each presented with its own 

separate identification key, can be stored in this way in 
the permanent memory S after being processed several 

times. 

In the sequence recall phase, the input layer Fis no 
longer activated and it is the occurrence of the identity 

pattern ID that triggers the recall of its associated se­
quence reproduced at the output S(t) in a different 

format from that of the original sequence Z(t). The 
permanent memory S progressively reconstructs the 

successive items by means of the maintained identifier 
and the temporary memory, which itself is built up 
dynamically, exactly as in the learning phase. 

As we shall see below, the pattern of activity of each 
of the five main layers of the model is preserved in a 
robust self-sustained state that cannot be modified un­
less a resetting is induced by an inhibitory control pro­

cess (A, I) that periodically updates the whole archi­
tecture. 

Z(I) = Zj 

[F) 

0 0 

(a) 

2.2. Structure and Working Principles of Layers 

Each of the layers F, S, G, C, and B (Figure l)  is 
composed of a set of nonoverlapping and unconnected 

clusters of elementary neuron-like units. The numbers 
of units inside the clusters are not necessarily the same 

and the number of clusters composing each layer may 
also change in the different layers. These numbers are 

structural parameters that have to be chosen in simu­

lations. Each unit within a cluster activates itself and 

inhibits all other units in the cluster ( see also Figure 
2a showing an example of a cluster structure), and this 
fixed prewiring subserves a competitive process between 
the units inside each cluster. Grossberg ( 1973, 1987a) 
has developed a neurobiologically plausible mathe­
matical model for this process where the continuous 

variation in time in the activity of the competing units 
can be obtained from a system of differential equations. 

This author ( Grossberg, 1987a) has proposed that this 
competitive process, which is costly to model in detail, 
can be simulated using a simple choice algorithm: 

within a cluster only the unit receiving the largest ex­
ternal input activation ( the winning unit) achieves its 

maximum value, whereas ail other units in the cluster 
become silent (WTA cluster). We have adopted here 
this contrast-enhancement process that behaves ap­
proximately like a binary switching and is currently in 
use in neural network models, particularly in those with 
special references to neurobiological correlates ( De­

haene, Changeux, & Nadal, 1987; Dehaene & Chan­
geux, 1989, 1991; Strong & Whitehead, 1989). The 

temporal properties of the intracluster competitive 
process, in the scope of the time sequence processing, 

will be detailed in the case of the input layer F ( see 
Section 2.2. l ) that has the same basic working prin­
ciples as that of the four other layers. 

A(t) Ill 

l(t) ■ 1 11 1 1111 11

(b) 

FIGURE 2. (a) Activation of one of the clusters in layer F by applying the multidimensional temporal sequence Z(t). The vertical 
line above unit l is a simplified dendritic tree receiving the horizontal inputs z1 to which a synaptic weight w, has been assigned.
The connectivity within the cluster subserves a competitlon mechanism. l(t) is an inhibitory signal that serves to reset the whole 
layer. ( b) Diagram showing the opposition between the adjustable frequency signal emitted by the control device A and the 
inhibitory resetting signal l(t). 



 

The input connectivity to all the layers, except that 
concerning the specific wiring from layer F to layer S, 
is of the distributed type, that is, each single unit in a 
given source layer ( or each component of the multi­
dimentional external inputs Z or ID) is connected to 
all the units in the corresponding target layer. It is in 
particular the same for the spreading connections to 
layer B, but in this case the activity patterns originating 
from the source layers ( i.e., from layer Sand from layer 
B itself through recurrent connections) are first delayed 
in time by lag modules R ( see Section 2.2.2). In fact, 
the model does not necessarily require such a complete 
connectivity and a random partial wiring may suffice 
when the five layers contain large numbers of clusters 
and units per cluster. 

The one exception referred to above is the connec­
tivity between layers F and S, which is of a specific 
type. Here each unit belonging to a given cluster in F 

is connected only to the corresponding unit in the ho­
mologous cluster in S. These one-to-one excitatory 
links, which have the same fixed positive synaptic 
weights, mean of course that the two layers both have 
the same structure, that is, the same number of clusters 
and the same number of units in each cluster. The other 
interlayer distributed connections, and those involving 
the external inputs, are also all excitatory. They are 
weighted with positive synaptic efficacies initially cho­
sen at random, and remain subsequently unchanged, 
except for the weights of the connections from G to S 
that can be modified according to a synaptic plasticity 
rule. 

2.2.1. Layer F. Figure 2a shows one of the clusters 
constituting the input layer F. An input sequence Z is 
represented by a time-varying vector Z(t) = [z 1 (t), 

z2 (t), ... zj(t), ... zdt)], whose particular forms 
of time variation will be discussed in Section 2.3.3. 
This input pattern activates all the units i in all the 
clusters constituting the layer, via links weighted with 
fixed, positive synaptic efficacies wli. In the simplest 
case, where vector Z is a single pattern with no tem­
porality, and none of the units in the layer have yet 
been activated, the competition within the cluster can 
be expressed in more formai terms as follows. Within 
a cluster, only the unit receiving the strongest external 
input activation a; = i1 wli

z1 (the winning unit) bas an 
active output (J; = 1 by convention), whereas the other 
units ( the losing units) have a null output. Hence a 
given item Z is transformed into a binary valued pattern 

by all the clusters in layer F, so that for example F = 

[(010)(001) ... (010)( 100)], assuming by conven­
tion ( as we shall do throughout Section 2 ) that a layer 
and its output have the same name. Provided that the 
size of input Z and the number of clusters in the layer 
are not too small, the minimum hypothesis consisting 
of choosing the weights w;1 at random should yield a

wide range of distinct states Fin response to a large set 

of different vectors Z. 
In the most general case, that where an input Z (t) 

changes constantly with time, it is necessary to intro­
duce an external means of controlling the recoding 
process in layer F. The competitive mechanism is a 
very fast one, and at time t = t I for instance, layer F 

"captures" the instantaneous state Z ( t i) of the input 
according to its specific format F( t 1 ) • The winning unit 
in each cluster subsequently freezes, however, into a 
robust, self-sustained state, and the layer becomes in­
sensitive to any further changes in the sequence Z(t): 

for t > t1 , layer F remains in the steady state F(t1 ). 
This insensitivity bas been tested on low-level simula­
tions using the system of differential equations proposed 
by Grossberg ( 197 3, 1987a), which expresses compe­
tition. For the clusters to become receptive again to the 
input sequence, they have to be reset by an input /(12) 
that at t = t2 delivers a brief but intense inhibitory 
signal to all the units in the layer. Just after the end of 
this short inhibition, the layer becomes able to quickly 
pick up the current state Z(t2 ) in the sequence in the 
form F(t2 ). The process then continues in the same 
way, so that the sequence Z(t), whether its values are 
graded or not, is sampled at each instant t = tn whenever 
the updating signal l(tn) occurs: F(t) = constant = 
F(tn) for ln < t < ln+I , corresponding to the capture of 
the current state Z(tn). 

The reset signal is triggered by a permanent source 
of inhibition /, which in turn is under the inhibitory 
control of a subsystem A ( Figure 1 ) : when A is active, 
source / is inhibited (inactive) and conversely, when A 

is inactive, source / is released (active). Figure 2b il­
lustrates this opposition by showing that the intermit­
tent updating signal resulting from / is generated by 
short breaks in the activity of A. The control device A 
( which was not modelled here) is assumed to be capable 
ofmodulating the frequency of the breaks, and thus to 
be responsible for determining the resolution at which 
the temporal sequence Z(t) is sampled. This control 

device is initially at rest, so that layer F is spontaneously 
inhibited and thus maintained in the inactive state. 
When an input sequence Z ( t) occurs, module A needs 
to be activated, and the inhibitory influence of / on 
layer F is therefore suppressed so that the first sample 
F(t,) ofan early state Z(t1) of the input sequence begins 
to take place. 

2.2.2. Other Layers. The basic principles we have just 
outlined in the case of layer F also apply to the other 
layers. The inhibition / that is necessary for zeroing to 
occur bas to be conveyed to all the layers in the archi­
tecture if we want them to be simultaneously updated 
and the information to circulate throughout the whole 
network. The speed at which the information circulates 
depends entirely on the frequency of the updating sig­
nal l(t). 



The role of layer C is similar to that of F: it recodes 
and samples the identity pattern ID, which has to be 
kept constant over time, C (tn) = C, while the associated 
sequence Z(t) is being processed. 

Layer S is similar in structure to layer F because 
both layers are linked together by specific connections: 
these are assigned with weights that are large in com­
parison with those assigned to the distributed connec­
tions from G to S. Consequently, when F and G si­
multaneously activate S, the outcome of the competi­
tion inside the clusters in S will depend only on the 
influence exerted by F. The winning cells in S will 
therefore be homologous with those in F, and hence 
S(tn) = F(tn) at each updating l(tn)-

Layer B is distributively activated by the delayed 
output from layer Sand by its own delayed activity 
through self-recurrent connections. The lag modules 
R, which have not been explicitly modelled, are as­
sumed to transmit a change in their input to their out­
put after an interval that can be fairly short because 
the state information is picked up quickly in the layers. 
At each updating of the system at l = lm layer B acquires 
a state that depends both on the previous state S( ln-i) 
of layer Sand on its own previous state B(tn-d, cor­
responding to the previous updating that occurred at 
ln-t · lfwe take <f> to denote the layer B output function, 
this yields the following expression: 

B(tn) = «t>[S(ln-d, B(tn_i)]. 

This equality can be successively written as: 

B(tn) = «t>[S(tn-1), «t>[S<tn-2), BUn-2)]], 

B(ln) = «/>[S(ln-1), «t>[S(ln-2), «t>[SUn-3), B(ln-3)]]], 

and so on, 

B(ln) = «t>[S(tn-d, «t>[SUn-2), 

<f>[S(tn-3), • • • <f>[S(tn-k), B(tn-d] • • .]]], 

where it can be seen that at each updating ln , layer B 
contains a representation of the current history of the 
sequence S(t), the length of which is limited because 
the diminishing influence exerted by a remote past state 
of S will disappear. This layer is a temporary memory, 
the state of which can remain preserved as long as the 
control module A continues to be active without any 
interruptions. The size of the time window encom­
passing the current sequence history ( the span size of 
the temporary memory) depends on several factors, 
including the ratio between the strength of the self-ac­
tivation of layer B and that of layer S, which is mainly 
a question of the relative sizes of these two layers. Here 
a parameter p weighting the self-activation of B was 
introduced as a means of dealing with this source of 
variation in the simulations. This overall parameter can 
be taken to account for example for variations in the 
density of the axonal branches that convey feedback 
information to the temporary memory. If pis very small 

or equal to zero, for instance, the temporary memory 
will contain only the most recent previous state in the 
sequence (span size = 1 ), because only the influence 
of S is taken into account in the competitive process; 
when p increases, a concomitant increase in the size of 
the time span occurs. If p becomes too large, however, 
the competitive process will no longer be affected by 
the activation of S, and layer B will become merely a 
sequence generator bearing no relation to the input 
Z ( t). On the other hand, the current size of the time 
span also depends on the structure of the sequence. 
These performances, which can easily be predicted at 
the theoretical level, were checked by carrying out sim­
ulations. 

In an early version of the model ( Ans, 1990b), the 
temporary memory consisted of a series of K layers, 
each of which was specifically activated by the lagged 
output from the previous layer. One advantage of a 
structure of this kind can be that a trace of each indi­
vidual item is stored in the temporary memory, but 
there are also disadvantages because the time span has 
a fixed size that depends entirely on the number K of 
layers ( spatial buffer oflength K). In the present version, 
we felt it would be preferable to deal with a succession 
of separate events that could be represented in a single 
layer, and with an adjustable time span: layer Bis there­
fore now a kind of "distributed buffer." The model de­
veloped by Jordan ( 1986) also involved a temporary 
memory consisting of a single layer with recurrent con­
nections: but this layer ( and the others) is not based 
on a local competition principle capable of maintaining 
a frozen state for some time, and the processing system 
proposed has a set speed that cannot be regulated by 
an external module. 

Layer G combines the current sequence history B(tn) 
with the constant pattern C identifying the sequence 
being processed, which can be written G(tn) = ip[ C, 
B(tn)L where it, denotes the output function of layer 
G. Here again a factor JI, playing a similar role to that
of p, is introduced to facilitate matters when it cornes
to dealing with the relative influences of layers C and
B on G. As in the case of layer F, these three layers
have to be large enough to be compatible with a wide
range of different states.

2.2.3. Learning Rule in Layer S. Last, layer G is con­
nected to layer S, through synapses of modifiable 
weight. Figure 3 shows one of the clusters in layer S, 

where the external activation applied to each unit i 
consists on the one band of the output J; from the ho­
mologous unit in the input layer F, and on the other 
band, of the elementary components gj oflayer G having 
a positive weighting m

u
. The latter distributed activation 

is denoted U; = L
j mu 

g
j. The changes in the synaptic 

weights mu with time are governed by the following 
synaptic plasticity rule ( of the error correction type), 
or learning rule ( Ans, l 990a,b): 
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FIGURE 3. Activation of one of the clusters in layer S by a highly 
welghted specific input F ( weighting not shown here) and by 
distributed associative connections with modifiable welghts m,. 
ln this case, which arises during the leaming period, the out­
come of the competition within a cluster depends only on the 
strongly weighted specific input, and therefore S = F.

dm;Jdt = ag
1 
(/3 + -ys; - U;) with a, /3, 'Y Const > O. ( 1) 

In any cluster belonging to S, the value of the output 
s; (0 or 1) ofany unit i depends on the outcome of the 
competitive process. As mentioned previously, when 
layers F and G are activated simultaneously, the out­
corne of the competition depends only on the strong 
specific externat activation exerted by F: S(t

n) = F(t
n
) 

after each updating I(t
n)- This means that during the 

leaming phase ofa given sequence Z ( t), rule ( 1 ) stores 
the relation between the current item in the corre­
sponding sequence S(t

n
) and the pattern G(tn) ac­

counting for its recent history B(t
n
) in the light of the 

sequence identifier C. At the retrieval phase on the 
contrary, when layer F is silent, the outcome of the 
competition inside the clusters in S depends only on 
the distributed activation exerted by G, which is cal­
culated with the modified weights. 

Apart from the additional parameters (3 and 'Y, 

expression ( 1 ) is close to the learning rule used for 
temporal sequence storage in Reiss and Taylor ( 1991 ) , 
where it is shown how the rule finds ( within an archi­
tectural context functionally equivalent in principle to 
ours) its neurobiological justification in the hippocam­
pal structure and activity ( Reiss & Taylor, .1991 ; Taylor 
& Reiss, 1992). We have introduced in rule ( 1 ) the 
parameters (3 and 'Y ( which may be selected within a 
very wide range of values) in order to prevent the ad­
justable weights from changing their sign during the 
learning phase ( by preventing the excitatory connec­
tions m

ij 
from becoming inhibitory), as is often the 

case with classical error correction rules, or generalized 
rules such as back propagation, where the synaptic ef-

ficacies undergo several changes of sign ( which is a 

strong neurophysiological assumption). Even greater 

freedom in the choice of these parameters can be ob­
tained by adding to the learning rule a further constraint 
with a null bottom threshold in regard to the adjustable 
weights. 

2.3. Sequence Leaming and Recall 

2.3.1. Sequence Learning. The leaming of a given se­
quence takes place as follows. The control module A is 
initially at rest, which implies that the system is in an 
inhibited, inactive state. When sequence Z ( t) occurs, 
accompanied by its constantly maintained identifying 
item ID, module A becomes active apart from an in­
termittent series of short breaks, the modulated fre­
quency of which regulates the speed at which the states 
of the architecture are updated, particularly in regard 
to the fineness of the sampling in the input layer F.

Once the sequence bas been processed, module A enters 
a resting state that leads to a prolonged inhibition on 
ail the layers, as the result of which the lag modules R

become completely unloaded. The system thus reset is 
then ready to process ( i.e., record or produce) another 
sequence. Each sequence bas to be run several times 
before becoming properly memorized by the permanent 
memory. 

2.3.2. Sequence Reca/1. Because input F is not acti­
vated at the sequence recall phase, it is the onset of the 

identity pattern ID which triggers the recall of its as­
sociated sequence at output S. Temporary memory B
is initially empty, and permanent memory S recon­
structs the first item of this sequence on the sole basis 
of the identifier. During the successive passages through 
the loop B, G, S ( at each updating ln), memory S pro­
gressively builds up the successive items of the recalled 
sequence based on the maintained identifier and the 
temporary memory, which itselfis built up dynamically, 
exactly as in the leaming phase. The production speed 
can be freely adjusted by varying the frequency of the 

intermittent signal emanating from the control module 
A. In particular, a given output item S(tn

) can be sus­
tained as long as module A maintains its activity with­
out interruption; the normal course of events can then
be resumed as required, because the history of item

S(t
n) is also held and preserved in temporary memory

B. It is also worth mentioning that the sequences
learned should theoretically ail be given the same ter­
minal symbol, which could then be used to stop the
closed-loop production process. The occurrence ofthis
particular item at the production phase would then
serve to inactivate the control device A and hence to
bring the activity of the whole system to a stop. This

stopping device was not actually modelled here, how­
ever.



2.3.3. Simulation. The following simple simulation of 
the processing of two sequences of formai items serves 
to illustrate the ability of our model to deal with long 

repeated subsequences that may be the source of in­

trasequence and intersequence ambiguities. In this 

simulation, there is no initial recoding of the input items 
Z and ID: a time sequence is expressed directly in the 
form of a series of states F(tn), and its corresponding 

identifier is expressed in the form of a constant state 
C(tn) = C. The two following sequences, identified by 

items C l  and C2, were processed: 

C 1: ABCDEFGHIJKLMNOP 

ABCDEFGHIJKLMNOPM 

C2: ABCDEFGHIJKLMNOP 

RRRRRRRRRRRRRRRRRRRRE. 

Here the letters forming sequences constitute special 
configurations ofwinning units in layer F, which were 

picked up at the various instants ln at which the control 
module A performed the successive updatings. The 
same is true for C 1 and C2, which are two distinct 

constant states oflayer C. The spaces within sequences 
have no temporal significance but have been inserted 
as a means of clearly demarcating the subsequences. 

The letters in bold print indicate the first successor of 
a preceding subsequence. The first sequence C 1 consists 

of two identical subsequences each consisting of 16 

items, the first of which is followed by item A and the 

second by M. At the recall phase, the permanent mem­
ory S must be able to reconstruct a given item on the 

basis of this item's history, which is contained in the 

temporary memory B, in the light of the sequence 

identifier C 1. Because this identifier is held constant 
during the recall of the whole sequence, it cannot have 
any intrasequence discrimina tory power. Hence for the 
two items A and M to be unambiguously reconstituted 
on the basis of two distinct histories, the current span 
in the temporary memory must encompass at least the 

17 previous items. lfit is not the case, for example with 
a time window of size 16, or less, items A and M will 

have the same history and there will be intrasequence 

ambiguity. The second of the above sequences, C2, be­
gins with the same subsequence as C 1, but this first 
part is followed by R instead of A. Hence these two 
items have the same history, say BA = BR = B, within 
the temporary memory B, whatever the current span 
size. But layer G, which combines the history of an 
item with the sequence identifier, provides two distinct 
combined histories for items A and R, respectively GA 

= it,[ C 1, B] and Ga = it,[ C2, B], which will avoid an 
intersequence ambiguity during the recall of these two 
items. It should also be noted that item R is repeated 
20 times in C2 before the occurrence of E. For E to 
be correctly recalled, it is necessary for the current 
memory span to encompass at least the 20 previous 
items. 

When the above example was simulated numerically, 
each of the clusters constituting all the layers of the 
model was taken to contain five competing units, and 
layers F and S to contain four clusters. A state corre­

sponding to the letters in the above two sequences is 

given for example by [ ( 00001 )( 00010)(00001 ) 
( 01000)]. Layers B, G, and C contain 15, 30, and 10 

clusters, respectively. Fairly similar compositions be­
tween identity items C 1 and C2 were chosen in order 
to demonstrate that their intersequence discriminatory 

power does not necessarily depend on the existence of 

strong differences. With the type of coding process 
adopted, involving 10 clusters of five units, these two 
identity patterns have five clusters in the same state 
( the same winning unit) and five in different states. In 

layers B and G, the fixed weights assigned to each unit 

are chosen at random on the basis of a uniform law in 

the range 0-1, and then normalized. Parameters p and 
Ji are taken to be equal, hence p = Ji = 5. In layer S 

the adjustable weights assigned to each unit are chosen 

initially at random on the basis of a uniform law in the 
range 0-0.005. In the synaptic plasticity rule ( 1 ), a = 

0.03, f3 = 1, and 'Y = 0.1. 
With these parameters, sequences C 1 and C2 can 

be learned very quickly: after being introduced only 

six times each, they can be perfectly recalled in response 
to their identifier. Any within, or between, sequence 

ambiguities can thus be resolved in the case of the pres­
ent diflicult example, which means that the constraints 

imposed on the span size of the temporary memory 
have been satisfied. 

The above simulation was chosen because it is most 

representative of the model efliciency. A large number 
of other simulations, performed with sequences of var­

ious lengths and structures, have led to satisfactory re­
sults. This efliciency arises, in particular, from the 
length of the current history preserved in the temporary 
memory; this history can be very long hence allowing 

the resolution of complex ambiguity problems. Sorne 
general features of the model and some particular se­

quence structures have to be examined however. 

The input temporal patterns to be stored, Z(t), have 
frequently been referred to as sequences in the foregoing 
because, in storage modelling, these temporal signais 
are usually simple successions of distinct patterns of 

variable duration ( square waves principally). Actually, 
our mode) can cope with time-varying multidimen­
sional signais Z ( t), with either graded or discrete values, 
whose temporal form may be rather general: analog 
signais, continuous or not, smooth or not. This vector 
signal is sampled and recoded by the input layer F in 
the form of a sequence of patterns, the components of 
which are quantified signal with binary values; it is that 
recoded sequence F(t), and not the original input Z(t), 
that is actually stored in the model and recalled at the 
output S(t). 

ln those cases where it is necessary to recall a time-



 

varying vector in its original form Z ( t), a conversion 
module playing the opposite role to that of layer F 
should be able to reconstitute the original input from 
the output sequence S( t). This will in fact be done in 
Section 3 where this conversion module simply consists 
of an associative memory. The reconstituted signais at 
the output of this neuromimetic digital to analog con­
verter will be all the more accurate because the sampling 
frequency, during learning, of the original time-varying 
vector Z(t) is high. This high frequency condition is 
especially required when the original vector to be re­
constructed bas components that are smoothly chang­
ing signais; in this case the converted outputs will appear 
as finely quantified signais. But if we suppose that the 
neuron-like units composing the neural converter have 
time constants, then these quantified signais will con­
sequently be smoothed by the persistent activity of the 
converter units. On the other band, the converted out­
puts will be more or less temporally contracted or ex­
panded in comparison with the original input Z(t), 
and that according to the production speed of the dy­
narnic memory controlled by module A. This temporal 
similarity (here used in the sense oftemporally homo­
thetical forms) will preserve, for instance, the relative 
durations of the patterns making up the usual sequences 
that are simply composed of distinct patterns of variable 
duration. 

Another time variation type that bas to be examined 
is that where the input time-varying vector Z(t) con­
tains gaps, that is, time intervals of variable length 
where all the components of the vector are null. In this 
case, the model will show some working difficulties un­
less it is supposed that an input gap is in fact represented 
by a non-null specific pattern 0 in the input layer F. 

This is easily achieved if, during the learning of an input 
Z ( t), layer Fis jointly activated by a constant activity 
pattern H. When an input gap occurs, only pattern H 

activates layer F and hence the specific state 0 is in­
duced. With this simple additional assumption, which 
was not mentioned in the foregoing for the sake of sim­
plicity, we corne back to an easily tractable situation, 
where gaps of different lengths within Z(t) are respec­
tively coded in layer F by subsequences of distinct sizes 
composed of the repeated item 0; as previously, the 
original input Z ( t) containing gaps can be reconstituted 
by a converter. This additional hypothesis and the time 
constants of the converter units will not be taken into 
account in the following application. 

3. APPLICATION TO PRODUCTION

OF MOTOR FORMS 

The general dynamic memory model was coupled with 
a sensorimotor system. A combined model was thus 
developed for learning spatial shapes, which are ex­
pressed in terms of temporal sequences of relevant ex­
teroceptive quantities, and producing these shapes in 

terms of motor activity. Hence we assumed that the 
format in which a given shape is memorized need not 
be the same as that into which it is translated in motor 
terms by the effector systems. 

3.1. Sensorimotor System 

A neuromimetic model for a sensorimotor system was 
developed in a previous study in the framework of re­
search on the organization of goal-directed movements 
( Coi ton et al., 1991; Gilhodes et al., 1991). The point­
ing or target tracking movements in question were either 
simulated numerically or performed by an artificial 
arm. The network drives the arm movements on the 
basis of proprioceptive and exteroceptive information 
picked up by sensory receptors. The proprioceptive in­
formation is given by sensors that code the angular val­
ues at the joints. The exteroceptive information specifies 
the position of any point in the arm's working space. 
Simulations were carried out on arms with two or three 
degrees of freedom moving in two- and three-dimen� 
sional space. Among the various versions of the model 
we have studied, one bas been chosen here that is now 
briefly described. 

A very schematic diagram of this sensorimotor 
module is given in Figure 4. The sensory layer K consists 
of cells forming a two-dimensional network. The cells 
are interconnected in such a way that each unit is linked 
via fixed excitatory connections to its nearest neigh­
bours and via fixed inhibitory connections to the cells 
in the less immediate environment. In this competitive 
situation, a single activity focus emerges, the site of 
which depends on the input afferent patterns. The cells 
in this layer have a binary activity ( the active cells in 
the winning focus score 1, and the others, 0). The 
structure of this layer, which was based on the descrip­
tion by Kohonen (1988), served here mainly to im­
plement both a plurimodal signal integration and a 
nonlinear sensorimotor coupling. Generally speaking, 
it can be used as a hidden layer in the learning ofhighly 
arbitrary associations (Ans, 1989). 

The sensorimotor module is organized during a 
learning period, during which the arm randomly ex­
plores its own working space. This exploration is in­
duced by applying a forcing activity M on the cells 
constituting the motor layer by means of a random ac­
tivity generator RG producing diversity. The move­
ments performed during the learning period are not 
directed toward any particular goal: they are simply 
"blindfold" exploratory movements. It is assumed that 
during this phase, the exteroceptive signais will inform 
the network about the position of extremity D of the 
arm in the working space. At each new arm position, 
a pair of sensory signais (E, P) contributes to the 
changes in the weights of the input adaptive connections 
in layer K. Kohonen's simplified self-organization al­
gorithm (Kohonen, 1988) was used here to compute 
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FIGURE 4. Diagram of the sensorimotor module. A simulated 
ann moves in a plane and its proprioceptive detectors encode 
its joint angles 81 and 82 in the fonn of a graded activity pattern 
P = (81, 82). The exteroceptive infonnation is given in the form 
of a graded activity pattern E = (x, y), the components of which 
are positive quantities giving the cartesian coordinates of any 
point T in the ann's working space referred to the arbitrary 
origin O. This exteroceptive information can possibly be gated 
off by attentlonal valve V. The ann is controlled by motor layer 
AM1, consisting of two cella, each of which activetes the eflector 
responsible for moving one of the joints. The motor command 
Mis a graded pattern of activity, the two components of which 
specify the pairs of jOint angles (811 82) to be adopted by the 
ann. The· proprioceptive and exteroceptive infonnation P and 
E is distributed among all the cella in sensory layer K, which 
is itself fully connected to motor layer AM1. These connections 
are all of the adaptive type during a leaming period when the 
arm actively explores its working space under the control of 
the random activity generator RG. 

the activity of the units in this layer. On the other band, 
sensory layer K participates in developing the adaptive 
links with motor layer AMI, which is an associative 
memory, and the sensorimotor coupling is thus built 
up. Here a simple classical error correction rule is used, 
where the required output is induced by the specific 
activation M delivered by the random generator RG. 

Because layer K bas a localized activity, the positive 
sign of the synaptic weights does not change in layer 
AMI when an error correction rule is applied. In this 
highly particular case, using this simple rule is not in­
compatible with the requirements of neurobiological 
realism, which is not generally true ( cf. Section 2.2.3). 

At some stage in the exploration of the arm's working 
space, the single activity focus in layer K begins to spe­
cifically encode the bimodal information consisting of 
the arm posture P and position E of its extremity D. 

Any changes in the arm position are accompanied by 
changes in the site of the activity focus in the layer. This 
layer moreover undergoes some self-organization as the 
result of which it reflects the topological relations im­
plicitly contained in the inputs it receives. At the end 
of the learning phase, the random generator is removed 
and the connections lose their previous plasticity. At 
the subsequent operational phase, the coordinates of 
any target Tin the working plane can be specified on 
the basis of the exteroceptive information. In this case, 
the arm movement is such that the distal extremity D 

gradually approaches the target T. Because of the mod­
el's structure, movements of the arm toward the target 
consist of a series of successive steps. If the target begins 
to move, the arm then performs a tracking movement. 

To make this system a little more natural, it was 
decided to add a switching device, simulated in the 
model by "valve" V, with which any irrelevant extero­
ceptive information can be gated off. Without this 
switch, the arm systematically performs the movement 
whenever the exteroceptive information is conveyed to 
any point other than extremity D of the arm. The 
switching device is assumed to be under the control of 
an attentional system that decides whether or not it is 
desirable to reach a given target. 

3.2. Learning and Motor Production of Shapes 

3.2. l. Temporal Encoding of Spatial Shapes. Figure 5 
shows a simple example of a shape drawn on the work­
ing plane of the artificial arm. It was assumed that this 
shape was first studied by the exteroceptive modality, 
with a view to sequentially specifying the coordinates 
of its most noteworthy points ( here, the vertices of the 
triangle), denoted El, E2, and E3. These points cor­
respond to position information encoded by vectors E 

E3 

oy 
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FIGURE 5. A simple exemple of a shape ( a triangle) drawn on 
the working plane. The contour of the triangle is encoded ln 
temporal terme by the exteroceptive modality E that sequentlally 
explores the vertices E1, E2, and E3. 



 

with origin O and ( x, y) components. The shape can 
therefore be defined by the temporal sequence of events 
El, E2, E3, El, assuming for the sake of simplicity 
that the form is scanned starting at vertex El, in the 
direction indicated by the arrows. Let us imagine that 
it is then proposed to store this sequence in a dynamic 
memory capable of delivering it as and when required 
via an appropriate interface to activate the sensorimotor 
module, which would consequently be activated by a 
series of virtual targets. The arm would respond by 
performing a tracking movement, and could thus be 
said to have produced the previously learned shape 
"from memory." Because the events constituting the 
sequence studied are absolute positions in a fixed 
Cartesian reference frame unrelated to the object, the 
arm should be unable to repeat the same figure con­
sistently at various points in its working space. 

What we intend to demonstrate here is precisely that 
one same learned shape can be reproduced as required 
whatever the initial arm position in space, and in a 
whole range of sizes. To achieve this, it is assumed that 
the exteroception, which up to now simply specified 
the absolute positions E, is now in addition capable of 
providing transient information oE, in terms of quan­
tities proportional to the differences between successive 
positions. It is then assumed without any loss of gen­
erality that these quantities are simply equal to these 
differences. In the example given in Figure 5, for in­
stance, when the exteroception successively specifies 
points El and E2, it will concomitantly also generate 
the transient information oEl , which can be formally 
expressed as the difference between vectors E2 and El: 
oEl = E2 - El = (ox, oy). 

Now the components of a vector difference can 
sometimes be negative, as occurs here in the case of the 
component ox = x2 - x,, and there exists no justifi­
cation for assuming a priori in a neuromimetic meta­
phor that the sign of a signal being transmitted along 
a nerve fibre ( which is analogous to a spike frequency 
having no sign) might be variable. In order to overcome 
this impediment to neurobiological realism, it is as­
sumed that these elementary algebraic differences are 
encoded by two pairs of associated increment captors: 

(Ax+ , Ax-) for the x axis and (Ay + , Ay-) for the y 

axis. When ox is positive, then ax+ = ox and ax- = 
0, and when ox is negative, then ax+ = 0 and ax- = 
1 ox 1, and likewise in the case of the two associated 
difference captors on the y axis. A shape segment is 

therefore defined by the quadruplet .1.E = ( ax + , Ax-, 
ay+ , ay-). 

Leaming the contour of an object will then consist 
of sequentially specifying its most singular points in 
the exteroceptive modality E and storing in the dynamic 
memory the resulting temporal sequence .1.E( t). In the 
case of the example in Figure 5, the sequence oEl , oE2, 

oE3 will therefore be replaced by the corresponding 
sequence of patterns .1.El, .1.E2, .1.E3. 

3.2.2. Genera/ Architecture of Combined Mode/. Figure 
6 gives the general architecture of the model in which 
the sensorimotor module is combined with the dynamic 
memory module DM. The two modules were linked 
together by means oflayers AM2, AM3, and �. the role 
of which will be described in detail below. Introducing 
these layers had no effect on the way in which the sen­
sorimotor module performed simple pointing and tar­
get tracking movements, because when these tasks are 
being carried out, unit DM is silent, that is, device A 

controlling it is inactive. 
In the present application, the mode of activation of 

input layer F of the dynamic memory DM was adapted 
in order to simplify the processing of output sequence 
S by the interface module. It was seen in Section 2, in 
the framework ofvery general hypotheses, that this ac­
tivation could be fully distributed and that the fixed 
input weights into the clusters in F could be chosen at 
random. Now it is assumed that each cluster in F is 
activated by only one of the elementary components 
of the pattern .1.E, which means that layer Fwill contain 
four clusters because vector ÂE bas four components. 
The fixed input weights are now no longer random but 
result from previous leaming, as occurred in layer K 
of the sensorimotor module. The outcome of this initial 
leaming is that the units in a given cluster F respond 
selectively to consecutive intervals, breaking up the 
range of values given to the elementary graded differ­
ence signal assigned to this cluster. A cluster thus serves 
to classify the values of the scalar input it receives, and 
the larger the number of units per cluster, the finer this 
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FIGURE 8. The general architecture of the model. The left-hand 
skie mainly processes the exteroceplive difference infonnation 
AE in the dynamic memory module DM. The right-hand side 
deala mainly with the exteroceplive position lnfonnatlon E withln 
the sensorimotor module. The interface module, whlch is shown 
here in a dotted frame, addltively combines the two types of 
exteroceptlve information, the sensory flow Of whlch can be 
interrupted by attentional valve V. 



classification will be. The architecture and working 

principles of the other DM layers remain unchanged. 
The interface module schematized in Figure 7 con­

tains two processing stages. The first is an associative 

memory AM3, which bas previously undergone a 
learning period at the time when the self-organization 

oflayer F of the DM module was being set up. At that 
time, layer AM3 learned to convert the localized format 
of the output S ( which was a replica of F) delivered by 

module DM into a graded activity conveyed by the ex­
teroceptive signal /lE; here each channel is processed 

separately by this digital to analog converter. Taking 
any one channel as an example, the graded component 

dx+ imposes the output of the first cell inAM3, which 

is adaptively connected by all the units in the cluster 

expressing this same difference component in a local­

ized way. Changes in the adaptive connections are gov­
erned by a classical error correction rule satisfying the 

constraint whereby no change in the signs of connec­

tions should occur because the associative information 

is localized. A similar process takes place in all the 
other three channels. After this learning phase, layer 

AM3 is able to reconstruct the information /lE when 

it receives no specific forcing sensory input. The ac­

curacy of this digital to analog conversion depends on 

the number of units in the clusters belonging to S.

The second stage in the interface module is an ad­

ditive device denoted � assumed to have prewired input 

connections and which additively combines the two 
types of exteroceptive information ( absolu te and dif­

ferential positions). The first cell �x in layer� therefore 

calculates the sum x + dx+ - dx-, where the sub­

tractive part is given by an inhibitory connection. Be­
cause the signais dx+ and dx- are mutually exclusive 

(when the one is active, the other is null), cell �x ac­
tually calculates the algebraic sum x + ox; the proce­
dure is the same with unit �y- In this way layer� carries 
out the vectorial sum E + oE, and it is this sum, which 
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FIGURE 7. Working scheme of the interface module. 

is of a purely positional nature, that will actually ac­
tivate layer Kin the sensorimotor module. 

The associative memory AM2 implements a new 

relation between sensory layer K and the exteroceptive 

position information E. Learning in this layer is as­
sumed to take place concomitantly with that in the 

whole sensorimotor module, and is set up in a very 
similar way to that of the symmetrical layer AMI on 
the motor side. The specific forcing input here is the 

exteroceptive sensory information E, whereas the dis­

tributed adaptive input is a collateral of the localized 
activity in layer K. Changes in the weighting are subject 
to the same error correction learning rule and to the 
same requirement that no change in the signs of syn­
aptic weights should occur. Introducing this layer can 

prove to be useful in situations where the exteroceptive 

sensory flow is interrupted by the attentional switch V:

when this occurs, the layer continuously reconstructs 

the virtual exteroceptive information about the position 

E of the distal extremity D of the artificial arm on the 
basis of the currently active focus in layer K. 

3.3. Results 

3.3. l .  Shape Learning. Once the prestructuring of the 
various modules bas been completed, the whole system 

is ready to learn spatial shapes and to produce them 

in motor terms. Temporal sequence /lE( t) is processed 

in the dynamic memory DM as described in Section 
2, except that now we have Z(t) = dE(t). The learning 

of a given shape occurs when the temporal sequence 
llE(t) induced by exploring the contour ofthis shape 

( with attentional valve V open) is repetitively fed into 

input layer F. The control device A must be made to 

operate periodically at a constant frequency adapted 
to the fineness of the transient signal /lE sampling. In 

parallel, the activity oflayer C must be sustained by an 

item ID that encodes the identity of the shape being 

learned, such as triangle, square, etc. 
The relation between this identity item and the se­

quence being learned is encoded in terms of changes 
in the connections in the permanent memory S of DM, 

which are now the on/y permanently adaptive links in 
the whole architecture. During the learning period, 

whatever arm movements are induced have no effect 

on the memorizing of the shape. lt should be mentioned 

however that these arm movements generally tend to 
approximate the contour of the shape being learned. 

3.3.2. Motor Shape Production. Let us take the most 

interesting case, where the sensory flux arising from 
the exteroceptive detectors is broken by the attentional 

switch V. In this case, the point in space being encoded 
at that moment by the exteroceptive sensors is not taken 
into account and bas no effect on the arm posture, 
which is of no importance at the beginning; whereas 
the virtual exteroceptive information E reconstructed 



 

by AM2 gives the current position of the arm's extrem­

ity D. 

The motor production by the arm of a shape mem­

orized in exteroceptive terms t:.E occurs as follows. The 

occurrence of an item ID identifying a given shape to 
be generated triggers the production of the correspond­

ing temporal sequence S( ln), where ln denotes the suc­

cessive updatings of the module DM; the speed of these 

updatings is regulated by the control module A. The 
associative memory AM3 converts the sequence of lo­
calized activities S(tn) into a graded sequence t:.E(tn), 

which is then added to the position information E in 
the summator 2:. 

At the beginning, the sensorimotor module is in an 
equilibrium configuration [P(O), E(O)] corresponding 
to any arm posture whatever. When the first element 
in sequence t:.E(t i ) begins to reach the summator 2:, 

sensory layer K receives the input activation E(O) + 

oE(ti ), specifying the position of a virtual target, and 
an arm movement toward this target is triggered. The 

directional pattern t:.E(/1 ), or oE(t1 ), is no longer a 
transient signal generated as in the learning stage be­
cause it can now be sustained for some length of time 

under the control of module A. As mentioned in Section 
3.1, the arm movement toward a fixed target is per­
formed step-wise, which means that several iterations 
of the sensorimotor loop are necessary for a target to 
be reached. At the first iteration r 1 in the sensorimotor 
module, the distal extremity of the arm will reach po­
sition E( T i ), midway between E(O) and position E(O) 

+ oE(l i ) of the virtual target. The information E(ti )

is reconstructed by memory AM2, and at the subse­

quent iteration r2, if the activity t:.E(li ) is sustained, 

layer K is activated by the sum E( T i ) + oE(ti ), spec­
ifying a new virtual target that bas shifted in the direc­
tion oE(t i ). The extremity of the arm continues to 
move in this direction and reaches position E( r2 ), 

midway between E( ri ) and the new position of the 
virtual target E( T i ) + oE(li ), and so on. As long as 

the activation t:.E(ti ) is sustained, layer K is activated 
at the subsequent iterations T, by the successive inputs 

E(r,_ i ) + oE(li ), and the arm's extremity thus con­
tinues to track the elusive target as it continues to move 
in the same direction oE(ti ). As the other directional 
vectors t:.E(ln) are sequentially generated by the sub­
sequent updatings ln of the dynamic memory, the arm 
continues to track the virtual target as previously, but 
makes a change of direction whenever the vectors 
t:.E(tn) do so. 

In this way, an identified shape will be sequentially 
produced at the motor level in a size that depends on 
the frequency at which the dynamic memory is up­
dated. This frequency must be maintained constant 
throughout the motor shape production period to en­
sure that the resulting product is not distorted. If the 

updating of module DM takes place at a low frequency, 
the final shape will tend to be large because the arm 

will continue to track the moving virtual target in the 

same direction for long periods. Conversely, if the up­

dating frequency is high, the final shape will tend to be 

small sized. Generally speaking, it is via the control 

exerted by module A on the dynamic memory's output 
speed that the size of the motor figure produced in fine 
can be adjusted as required. 

The velocity of the arm movement can furthermore 

be controlled. First, it should be mentioned that when 

a given directional item t:.E(tn) is produced by the dy­

namic memory, the velocity of the arm movement in­

duced step-wise in the appropriate direction depends 

on the timer controlling the iterations T. in the senso­

rimotor loop. The setting of this timer, which up to 

now was implicitly assumed to be constant over time, 

is in fact itself liable to be modulated in sensory layer 

K. This layer, the internal functioning of which involves
a competitive process similar to that implemented in

the dynamic memory clusters, is destined also to enter
robust self-sustained states. Strictly speaking, it should
also be updated by a system (A', f), which is analogous

to system (A,/). By introducing this further control

device, it would be possible to modulate the frequency

of the updating in layer K, and hence to adjust the

velocity of the arm movement as required.

Several simulations have been carried out with the 

combined architecture. The following two very simple 

simulations clearly illustrate the main behavioural 

properties of the model. After a learning period during 

which a given shape was presented to the model at a 

single point in space and in a single-sized format, the 

artificial arm was able to draw this shape anywhere in 

its working space in whatever size was required. The 

first property in question, which we have called "trans­

lation invariance," is illustrated in Figure 8, and the 
second, which we have called "size invariance," in Fig­

ure 9. 

4. CONCLUSION

The dynamic memory neuromimetic model described 

in Section 2 features an essential distinctive property: 
it is able to recall a learned sequence at a freely adapt­

able speed. This ability is fairly commonplace among 

(a) (b) (c) 

FIGURE 8. An example showing the translation invariance 
property. (a) The shape leamed. (b) and (c) The trajectories 

taken by the arm's extremity while producing the leamed shape 
starting from two different points in space. 



□ 

(a) (b) (c) 

FIGURE 9. An example showing the size invariance property. 
(a) The shape leamed. ( b) The trajectory taken by the extremity 
of the ann whlle producing the learned shape. ( c) The trajectory 
taken by the ann's extremity while produclng the learned shape
with a larger amplitude.

living creatures, but bas rarely been dealt with in the 
connectionist literature. Apart from the fact that this 

ecological feature bas to be accounted for by a general 
dynamic model, the tlow control property can have 

other more far-reaching effects. We have demonstrated 

for example, by applying the model to the production 

of motor shapes, that the dynamic memory's ability to 

contract or expand the lime scale when recalling a given 
sequence learned in exteroceptive terms resulted at the 

motor level in the production of forms that could be 

either reduced or enlarged on the spatial scale. 
Another important property of our dynamic mem­

ory is its ability to rapidly leam sequences of temporal 
events. This aptitude is rare among the present day 

models, and yet it is essential for both living and arti­

ficial systems that constantly encounter new situations 

that have to be learned rapidly. Fast leaming is a char­
acteristic feature of single-layer memory models ( with 
no hidden layer), as in Reiss and Taylor ( 1991 ) and in 

the present paper, but this feature is especially enhanced 
in our model where the memory layers are based on a 

competitive learning procedure. Indeed it takes much 

less time to approximate a set of adaptive weights re­
sulting in only one particular unit in a cluster becoming 
the winner than to finely calculate, in the case of models 

involving no competition, the exact weights required 
to produce accurate, possibly graded outputs. 

Generally speaking, the larger the layers constituting 

the model, the more efficiently they perform: the size 
of layer G is a particularly decisive factor in this respect. 
The relations stored in permanent memory S between 
a current item and its history, which is represented in 
layer G, can be highly arbitrary; and the synaptic plas­
ticity rule ( 1 ) , which was chosen mainly because of 
neurobiological plausibility, is unable to store in the 
distributed form a large number of sequences contain­
ing many items unless the dimension of the patterns G
is sufficiently large. This constraint is not necessarily 
too severe to be compatible with the neuronal resources 
of a real-life brain. 

Our model involved a minimal approach based on 
a set of synaptic weights most of which were chosen at 

random and fixed, and on a synaptic plasticity rule that 
is fairly simple and yet satisfies the most elementary 
natural constraints. To achieve even greater biological 

realism, each ofthese basic units with a strong autoex­
citatory connection, so designed in order to simplify 

the formalism, could in fact be easily replaced by a 
micropopulation of neurons densely interconnected by 

excitatory synapses. Micropopulations of this kind 
( with two persistent states of activity) and the clusters 

within which they are engaged in competitive relation­
ship ( neural assemblies) have been roughly assimilated 
to the micro and macrocortical columns, respectively 

(Dehaene et al., 1987; Dehaene & Changeux, 1989, 
1991; Strong & Whitehead, 1989). 

The combined model described in Section 3, in 
which the dynamic memory module was linked up with 
the sensorimotor module, operates on the information 
of the proprioceptive and exteroceptive types. The pro­

prioceptive sensory detectors were assumed to pick up 

purely postural information, although the messages 
conveyed by human muscle spindles are known to relate 

both to posture and to the velocity of the joints involved 

in the movement ( Matthews, 1972). This additional 

velocity information, which is essentially transient, can 
in fact also be directly taken into account by the model. 

Another way of dealing with this problem is to assume 
that the purely postural information that activates sen­
sory layer K of the model is conveyed by an intermediate 

structure responsible for preprocessing the composite 

message originating from the sensory detectors. It is 
worth mentioning here that we have previously de­

scribed models, some with neuromimetic features ( Ans 
& Gilhodes, 1983; Ans, Gilhodes, & Hérault, 1983; 

Hérault & Ans, 1984; Ans, Hérault, & Jutten, 1985), 
and others with a differential formalism ( Gilhodes, 

Coiton, Roll, & Ans, l 993 ), including intermediate 
structures of this kind where composite afferent mes­
sages are decomposed into their position and velocity 
components. 

We have used the term exteroceptive when referring 
to the sensory information of the second type dealt with 
in the model. In humans, exteroceptive information is 

mainly of the visual type. lt is usually by means of 

vision that a target to be reached in extra-personal space 

is detected and located. In this case, the absolute po­
sition E might result from the combination of two sig­
nais: the target retinal coordinates and the extra-retinal 
signal, from either central or peripheral origin, inform­
ing on the eye-in-orbit position. The relative position 

t:.E might be obtained in two different ways: it might 
either result from the central processing of the retinal 
error ( the distance and the direction of a target image 
relative to the fovea), or it might be processed from 
the extra-retinal signal changes occurring during the 
movement the eye performs to go from one point to 
another. The precise processings involved in generating 
the two kinds of exteroceptive information were not 



 

modelled, this being beyond the topic of the present 
paper. 

The basic principle adopted here, according to which 
the format in which a shape is memorized is not nec­
essarily the same as that into which it is translated and 
produced in motor terms, gave rise to some important 
behavioural properties emerging from the mode!. The 
first two properties, which were mentioned above, have 
been called "translation invariance" and "size invari­
ance": a shape which bas been learned at a single point 
in space and in a given size can be drawn by the arm 
anywhere in its working space and in a whole range of 
sizes. 

Another consequence of this basic principle is that 
the memorized shape can be repeated by other effector 
systems that have never participated in the shape learn­
ing because the exteroceptive temporal information 
produced on the output of the dynamic memory is, 
precisely, not related to the particular sensorimotor or­
ganisation of the simulated limb performing move­
ments: the classic example here is the ability to write 
one's signature with the tip of one's foot ( Bernstein, 
1967). To better understand this commonplace behav­
iour, suppose that distinct sensorimotor modules, each 
composed of a set of layers ( K, AMI, AM2, �) similar 
to that depicted in Figure 6, have first separately ac­
quired, on the basis of the common exteroceptive in­
formation giving absolu te position E, the basic ability 
to drive the pointing movements of their corresponding 
specific limbs. Consider now that the output b..E of a 
unique and common dynamic system, which is com­
posed of the dynamic memory DM and its associated 
converter layer AM3, connects ail the layers � belonging 
respectively to the different sensorimotor modules ( as 
defined above). The output of AM3, which conveys 
relative position information b..E(t), temporally defin­
ing a given shape in a common exteroceptive format, 
will be added in the different layers }; together with the 
current absolute positions E of the respective distal ex­
tremities D of the corresponding limbs. Hence these 
distinct effector systems will be able to perform similar 
motor figures in response to the same exteroceptive 
shape stored in a unique dynamic memory. 

The above behavioural properties, which originate 
from a realistic neural network model in which they 
are not implemented a priori, reinforce the idea that 
the structures responsible for planning a movement in 
the central nervous system might be largely indepen­
dent of the motor systems performing this movement. 
Our model proposes that these structures ( here only 
the dynamic memory) would store generic programs, 
dynamically defining "shape template," which would 
then be translated in various ways in the same or in 
several motor systems, even in the effector systems that 
have never been recruited during shape learning. This 
single entity giving rise to diversity is related to 
Schmidt's idea ( 1988) of a "generalized motor pro-

gram" which would contain only one unique represen­
tation of the essential invariant features for a particular 
type of action and whose expression could be varied 
depending on the choice of certain parameters. And 
our contribution here was to propose how these abstract 
programs could actually be implemented at a quasi­
neural level. 
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