K. A. Reynolds, Kelly Techniques for molecular imaging probe design, Mol. Imaging, vol.10, pp.407-419, 2011.

V. Mahmoudi and S. Serpooshan, Engineered nanoparticles for biomolecular imaging, Nanoscale, vol.132, issue.1, pp.3007-3026, 2011.
DOI : 10.1021/ja910675v

P. Corot, J. M. Robert, and M. Idée, Port Recent advances in iron oxide nanocrystal technology for medical imaging

A. A. Bakhtiary, M. J. Saei, M. Hajipour, O. Raoufi, and M. Vermesh, Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.2, pp.287-307, 2016.
DOI : 10.1016/j.nano.2015.10.019

H. Sharifi, S. Seyednejad, F. Laurent, A. A. Atyabi, and M. Saei, molecular and cellular imaging, Contrast Media & Molecular Imaging, vol.5, issue.1, pp.329-355, 2015.
DOI : 10.1111/j.1535-7597.2005.05101.x

J. D. Sill and D. B. Mccully, Cowan Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells, PLoS One, pp.9-108695, 2014.

I. Soares, I. M. Ferreira, R. A. Igreja, C. M. Novo, and J. P. Borges, Application of Hyperthermia for Cancer Treatment: Recent Patents Review, Recent Patents on Anti-Cancer Drug Discovery, vol.7, issue.1, pp.64-73, 2012.
DOI : 10.2174/157489212798358038

J. W. Veiseh and M. Gunn, Zhang Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging

M. G. Shapiro, P. W. Goodwill, A. Neogy, M. Yin, F. S. Foster et al., Biogenic gas nanostructures as ultrasonic molecular reporters, Nature Nanotechnology, vol.2011, issue.4, pp.311-316, 2014.
DOI : 10.1016/0022-2836(79)90281-X

URL : https://authors.library.caltech.edu/45169/7/nnano.2014.32-s1.pdf

M. G. Shapiro, R. M. Ramirez, L. J. Sperling, G. Sun, J. Sun et al., Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging, Nature Chemistry, vol.46, issue.7, pp.629-634, 2014.
DOI : 10.1002/mrm.1180

URL : https://authors.library.caltech.edu/44201/13/nchem.1934-s1.pdf

D. Faivre, Magnetotactic Bacteria and Magnetosomes, Chemical Reviews, vol.108, issue.11, pp.4875-4898, 2008.
DOI : 10.1021/cr078258w

Y. W. Jun, Y. M. Huh, J. S. Choi, J. H. Lee, H. T. Song et al., Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging, Journal of the American Chemical Society, vol.127, issue.16, pp.5732-5733, 2005.
DOI : 10.1021/ja0422155

K. Xie and X. Chen, Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria, Nano Research, vol.311, issue.4, pp.261-278, 2009.
DOI : 10.1007/BF00256663

L. Vuong, J. F. Berret, J. Fresnais, Y. Gossuin, and O. , Sandre A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T 2 -contrast agents

H. Jung, K. S. Kim, W. K. Park, and T. Moon, Hyeon Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets

Y. Sun, X. J. Li, and P. C. Liang, Wang Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multifunctions, J. Nanomater, pp.2011-469031, 2011.

A. Hartunga, M. R. Lisy, K. H. Herrmann, I. Hilger, D. Schüler et al., Reichenbach Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging, J. Magn. Magn. Mater, pp.311-454, 2007.

T. Orlando, S. Mannucci, E. Fantechi, G. Conti, S. Tambalo et al., Sbarbati Characterization of magnetic nanoparticles from Magnetospirillum Gryphiswaldense as potential theranostics tools, Contrast Media Mol. Imaging, pp.11-139, 2016.

K. Grünberg, E. C. Müller, A. Otto, R. Reszka, D. Linder et al., Schüler Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum Gryphiswaldense

N. Ginet, R. Pardoux, G. Adryanczyk, D. Garcia, C. Brutesco et al., Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes, PLoS ONE, vol.12, issue.6, p.21442, 2011.
DOI : 10.1371/journal.pone.0021442.t001

S. C. Baetke, T. Lammers, and F. , Applications of nanoparticles for diagnosis and therapy of cancer, The British Journal of Radiology, vol.46, issue.1054, p.20150207, 2015.
DOI : 10.1016/j.ijpharm.2013.02.046

K. A. Wang, M. G. Mohamedali, G. Rosenblum, and X. Lu, Chen Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles, Biomaterials, vol.33, pp.5414-5422, 2012.

J. Fang, H. Nakamura, and H. , Maeda The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and

F. Danhier, A. Le-breton, and V. , RGD-Based Strategies To Target Alpha(v) Beta(3) Integrin in Cancer Therapy and Diagnosis, Molecular Pharmaceutics, vol.9, issue.11, pp.2961-2973, 2012.
DOI : 10.1021/mp3002733

P. T. Caswell and J. C. , Norman Integrin trafficking and the control of cell migration Traffic, pp.14-21, 2006.

P. C. Brooks, R. A. Clark, and D. A. , Cheresh Requirement of vascular integrin alpha v beta 3 for angiogenesis Science, pp.569-571, 1994.

C. Zhang, M. Jugold, E. C. Woenne, T. Lammers, B. Morgenstern et al., Kiessling Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner Cancer Res, pp.67-1555, 2007.

T. Matsunaga, Y. Okamura, Y. Fukuda, A. T. Wahyudi, Y. Murase et al., Takeyama Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp, p.1

D. Murat, A. Quinlan, H. Vali, and A. , Komeili Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle

J. Dennie, J. B. Mandeville, J. L. Boxerman, S. D. Packard, B. R. Rosen et al., Weissk off NMR imaging of changes in vascular morphology due to tumor angiogenesis Magn, Reson. Med, pp.40-793, 1998.

S. Stylli, R. B. Luwor, T. M. Ware, F. Tan, and A. H. , Mouse models of glioma, Journal of Clinical Neuroscience, vol.22, issue.4, pp.619-626, 2015.
DOI : 10.1016/j.jocn.2014.10.013

D. Rieken, A. Habermehl, L. Mohr, K. Wuerth, K. Lindel et al., Targeting ??????3 and ??????5 inhibits photon-induced hypermigration of malignant glioma cells, Radiation Oncology, vol.6, issue.1, p.132, 2011.
DOI : 10.1083/jcb.200609004

S. Hak, J. Cebulla, E. M. Huuse, L. Davies-cde, W. J. Mulder et al., Haraldseth Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy Angiogenesis, pp.17-93, 2014.

D. Moncelet, V. Bouchaud, P. Mellet, E. Ribot, S. Miraux et al., Cellular Density Effect on RGD Ligand Internalization in Glioblastoma for MRI Application, PLoS ONE, vol.1, issue.Pt 1, p.82777, 2013.
DOI : 10.1371/journal.pone.0082777.g007

R. Liu, J. Liu, J. Tong, T. Tang, W. Kong et al., TangHeating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia Prog, Nat. Sci, pp.22-31, 2012.

J. Xiang, S. Wei, W. Jianbo, G. Guili, and L. Feng, Ying Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro Lett, Appl. Microbiol, pp.45-75, 2007.

L. Han, S. Y. Li, Y. Yang, F. M. Zhao, J. Huang et al., Research on the Structure and Performance of Bacterial Magnetic Nanoparticles, Journal of Biomaterials Applications, vol.72, issue.5, pp.433-448, 2008.
DOI : 10.1016/S0378-5173(02)00623-3

J. A. Kim, H. J. Lee, H. J. Kang, and T. H. , Park The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles, Biomed. Microdevices, pp.11-287, 2009.

L. Yan, X. Yue, S. Zhang, P. Chen, Z. Xu et al., Li Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans

C. Chen, P. Wang, and L. , Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology, Journal of Nanoscience and Nanotechnology, vol.16, issue.3, pp.2164-2171, 2016.
DOI : 10.1166/jnn.2016.10954

E. Alphandéry, S. Faure, O. Seksek, F. Guyot, and I. , Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy, ACS Nano, vol.5, issue.8, pp.6279-6296, 2011.
DOI : 10.1021/nn201290k

N. Bernardi, R. Betterle, P. Bassi, and A. Marzola, Sbarbati Magnetic nanoparticles from Magnetospirillum Gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma, PLoS One, vol.9, p.108959, 2014.