Skip to Main content Skip to Navigation
Journal articles

Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms

Margot Loussouarn 1, 2 Anja Krieger-Liszkay 3, 4 Ljubica Svilar 5 Antoine Bily 2 Simona Birti 2 Michel Havaux 6 
1 PPV - Protéines de Protection des Végétaux
BIAM - Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) : DRF/BIAM
3 MROP - Mécanismes régulateurs chez les organismes photosynthétiques
B3S - Département Biochimie, Biophysique et Biologie Structurale
6 SAVE - Signalisation de l'Adaptation des Végétaux à l'Environnement
BIAM - Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) : DRF/BIAM
Abstract : Carnosic acid, a phenolic diterpene specific to the Lamiaceae family, is highly abundant in rosemary (Rosmarinus officinalis). Despite numerous industrial and medicinal/pharmaceutical applications of its antioxidative features, this compound in planta and its antioxidant mechanism have received little attention, except a few studies of rosemary plants under natural conditions. In vitro analyses, using high-performance liquid chromatography-ultraviolet and luminescence imaging, revealed that carnosic acid and its major oxidized derivative, carnosol, protect lipids from oxidation. Both compounds preserved linolenic acid and monogalactosyldiacylglycerol from singlet oxygen and from hydroxyl radical. When applied exogenously, they were both able to protect thylakoid membranes prepared from Arabidopsis (Arabidopsis thaliana) leaves against lipid peroxidation. Different levels of carnosic acid and carnosol in two contrasting rosemary varieties correlated with tolerance to lipid peroxidation. Upon reactive oxygen species (ROS) oxidation of lipids, carnosic acid was consumed and oxidized into various derivatives, including into carnosol, while carnosol resisted, suggesting that carnosic acid is a chemical quencher of ROS. The antioxidative function of carnosol relies on another mechanism, occurring directly in the lipid oxidation process. Under oxidative conditions that did not involve ROS generation, carnosol inhibited lipid peroxidation, contrary to carnosic acid. Using spin probes and electron paramagnetic resonance detection, we confirmed that carnosic acid, rather than carnosol, is a ROS quencher. Various oxidized derivatives of carnosic acid were detected in rosemary leaves in low light, indicating chronic oxidation of this compound, and accumulated in plants exposed to stress conditions, in parallel with a loss of carnosic acid, confirming that chemical quenching of ROS by carnosic acid takes place in planta.
Document type :
Journal articles
Complete list of metadata

Cited literature [53 references]  Display  Hide  Download
Contributor : Alexandra MARAVAL Connect in order to contact the contributor
Submitted on : Thursday, February 15, 2018 - 10:42:09 AM
Last modification on : Sunday, June 26, 2022 - 5:42:32 AM
Long-term archiving on: : Tuesday, May 8, 2018 - 6:43:41 AM


Loussouarn et al.pdf
Publication funded by an institution



Margot Loussouarn, Anja Krieger-Liszkay, Ljubica Svilar, Antoine Bily, Simona Birti, et al.. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiology, American Society of Plant Biologists, 2017, 175 (3), pp.1381-1394. ⟨10.1104/pp.17.01183⟩. ⟨hal-01709606⟩



Record views


Files downloads