M. Bazzi and G. Nelsestuen, Association of protein kinase C with phospholipid vesicles, Biochemistry, vol.26, issue.1, pp.115-137, 1987.
DOI : 10.1021/bi00375a017

M. Bazzi and G. Nelsestuen, Protein kinase C interaction with calcium: a phospholipid-dependent process, Biochemistry, vol.29, issue.33, pp.7624-7654, 1990.
DOI : 10.1021/bi00485a012

N. Brose, Synaptotagmin: a calcium sensor on the synaptic vesicle surface, Science, vol.256, issue.5059, pp.1021-1026, 1992.
DOI : 10.1126/science.1589771

R. Bashir, A gene related to Caenorhabditis elegansspermatogenesis factor fer-1is mutated in limb-girdle muscular dystrophy type 2B, Nature Genetics, vol.132, issue.1, pp.37-42, 1998.
DOI : 10.1016/0003-2697(83)90418-9

J. Liu, Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy, Nature Genetics, vol.43, issue.1, pp.31-37, 1998.
DOI : 10.1002/ana.410430514

S. Illarioshkin, Identical dysferlin mutation in limb-girdle muscular dystrophy type 2B and distal myopathy, Neurology, vol.55, issue.12, pp.1931-1964, 2000.
DOI : 10.1212/WNL.55.12.1931

K. Nguyen, Phenotypic Study in 40 Patients With Dysferlin Gene Mutations, Archives of Neurology, vol.64, issue.8, pp.1176-82, 2007.
DOI : 10.1001/archneur.64.8.1176

H. Ueyama, Clinical Heterogeneity in Dysferlinopathy., Internal Medicine, vol.41, issue.7, pp.532-568, 2002.
DOI : 10.2169/internalmedicine.41.532

M. Fanin and C. Angelini, Muscle pathology in dysferlin deficiency, Neuropathology and Applied Neurobiology, vol.59, issue.6, pp.461-70, 2002.
DOI : 10.1093/hmg/8.5.871

K. Nguyen, Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies, Human Mutation, vol.26, issue.2, p.165, 2005.
DOI : 10.1002/humu.9355

URL : https://hal.archives-ouvertes.fr/hal-01681874

A. Selva-o-'callaghan, Muscle inflammation, autoimmune Addison's disease and sarcoidosis in a patient with dysferlin deficiency, Neuromuscular Disorders, vol.16, issue.3, pp.208-217, 2006.
DOI : 10.1016/j.nmd.2006.01.005

J. Vinit, Dysferlin deficiency treated like refractory polymyositis, Clinical Rheumatology, vol.15, issue.1, pp.103-109, 2010.
DOI : 10.1007/s10067-009-1273-1

O. Mahmood and X. Jiang, Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review), Molecular Medicine Reports, vol.9, issue.5, pp.1515-1547, 2014.
DOI : 10.3892/mmr.2014.2048

P. Mcneil and R. Steinhardt, Plasma Membrane Disruption: Repair, Prevention, Adaptation, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.697-731, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.140101

R. Steinhardt, G. Bi, and J. Alderton, Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release, Science, vol.263, issue.5145, pp.390-393, 1994.
DOI : 10.1126/science.7904084

S. Cooper and P. Mcneil, Membrane Repair: Mechanisms and Pathophysiology, Physiological Reviews, vol.65, issue.4, pp.1205-1245, 2015.
DOI : 10.1073/pnas.84.5.1404

URL : http://physrev.physiology.org/content/physrev/95/4/1205.full.pdf

A. Defour, Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle, Human Molecular Genetics, vol.14, issue.11, pp.1979-91, 2017.
DOI : 10.1186/1471-2105-14-128

C. Cai, Membrane Repair Defects in Muscular Dystrophy Are Linked to Altered Interaction between MG53, Caveolin-3, and Dysferlin, Journal of Biological Chemistry, vol.284, issue.23, pp.15894-902, 2009.
DOI : 10.1016/S0022-2828(03)00139-1

A. Draeger, K. Monastyrskaya, and E. Babiychuk, Plasma membrane repair and cellular damage control: The annexin survival kit, Biochemical Pharmacology, vol.81, issue.6, pp.703-715, 2011.
DOI : 10.1016/j.bcp.2010.12.027

C. Eddleman, Repair of plasmalemmal lesions by vesicles, Proceedings of the National Academy of Sciences, vol.23, issue.1-2, pp.4745-50, 1997.
DOI : 10.1016/0301-0082(84)90012-1

C. Godell, Calpain activity promotes the sealing of severed giant axons, Proceedings of the National Academy of Sciences, vol.26, issue.2, pp.4751-4757, 1997.
DOI : 10.1002/neu.480260209

A. Jimenez, ESCRT Machinery Is Required for Plasma Membrane Repair, Science, vol.13, issue.1, p.1247136, 2014.
DOI : 10.1080/07391102.1995.10508818

S. Lauritzen, T. Boye, and J. Nylandsted, Annexins are instrumental for efficient plasma membrane repair in cancer cells, Seminars in Cell & Developmental Biology, vol.45, pp.32-40, 2015.
DOI : 10.1016/j.semcdb.2015.10.028

R. Mellgren and X. Huang, Fetuin A Stabilizes m-Calpain and Facilitates Plasma Membrane Repair, Journal of Biological Chemistry, vol.18, issue.49, pp.35868-77, 2007.
DOI : 10.1074/jbc.M603007200

URL : http://www.jbc.org/content/282/49/35868.full.pdf

L. Scheffer, Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair, Nature Communications, vol.6, p.5646, 2014.
DOI : 10.1371/journal.pone.0014517

R. Mellgren, A Plasma Membrane Wound Proteome, Journal of Biological Chemistry, vol.31, issue.47, pp.36597-607, 2010.
DOI : 10.1242/jcs.022020

T. Togo, T. Krasieva, and R. Steinhardt, A Decrease in Membrane Tension Precedes Successful Cell-Membrane Repair, Molecular Biology of the Cell, vol.11, issue.12, pp.4339-4385, 2000.
DOI : 10.1091/mbc.11.12.4339

R. Steinhardt, The Mechanisms of Cell Membrane Repair: A Tutorial Guide to Key Experiments, Annals of the New York Academy of Sciences, vol.1284, issue.1, pp.152-65, 2005.
DOI : 10.1007/s00232-002-1003-y

N. Andrews, M. Corrotte, and T. Castro-gomes, Above the fray: Surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair, Seminars in Cell & Developmental Biology, vol.45, pp.10-17, 2015.
DOI : 10.1016/j.semcdb.2015.09.022

J. Kay, Phosphatidylserine dynamics in cellular membranes, Molecular Biology of the Cell, vol.23, issue.11, pp.2198-212, 2012.
DOI : 10.1091/mbc.E11-11-0936

E. Vaughan, Lipid domain-dependent regulation of single-cell wound repair, Molecular Biology of the Cell, vol.3, issue.0, pp.1867-76, 2014.
DOI : 10.7554/eLife.01879

J. Mcdade, A. Archambeau, and D. Michele, Rapid actin-cytoskeleton???dependent recruitment of plasma membrane???derived dysferlin at wounds is critical for muscle membrane repair, The FASEB Journal, vol.67, issue.8, pp.3660-70, 2014.
DOI : 10.1074/jbc.M112.391722

G. Bi, -regulated Exocytosis, The Journal of Cell Biology, vol.108, issue.5, pp.999-1008, 1997.
DOI : 10.1126/science.2142332

M. Alvarez-martinez, Characterization of the Interaction Between Annexin I and Profilin, European Journal of Biochemistry, vol.30, issue.3, pp.777-84, 1996.
DOI : 10.1016/0167-4838(94)90236-4

M. Alvarez-martinez, Effects of profilin???annexin I association on some properties of both profilin and annexin I: modification of the inhibitory activity of profilin on actin polymerization and inhibition of the self-association of annexin I and its interactions with liposomes, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1339, issue.2, pp.331-371, 1997.
DOI : 10.1016/S0167-4838(97)00018-6

A. Marg, Sarcolemmal Repair Is a Slow Process and Includes EHD2, Traffic, vol.64, issue.9, pp.1286-94, 2012.
DOI : 10.1063/1.1143970

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2012.01386.x/pdf

C. Matsuda, Dysferlin Interacts with Affixin (??-Parvin) at the Sarcolemma, Journal of Neuropathology & Experimental Neurology, vol.115, issue.4, pp.334-374, 2005.
DOI : 10.1016/S1097-2765(00)80019-2

M. Abreu-blanco, J. Verboon, and S. Parkhurst, occurs through three distinct phases of membrane and cytoskeletal remodeling, The Journal of Cell Biology, vol.111, issue.3, pp.455-64, 2011.
DOI : 10.1083/jcb.201011018.dv

M. Abreu-blanco, J. Verboon, and S. Parkhurst, Coordination of Rho Family GTPase Activities to Orchestrate Cytoskeleton Responses during Cell Wound Repair, Current Biology, vol.24, issue.2, pp.144-55, 2014.
DOI : 10.1016/j.cub.2013.11.048

H. Benink and W. Bement, Concentric zones of active RhoA and Cdc42 around single cell wounds, The Journal of Cell Biology, vol.224, issue.3, pp.429-468, 2005.
DOI : 10.1016/S0074-7696(05)24005-6

C. Mandato and W. Bement, oocyte wounds, The Journal of Cell Biology, vol.95, issue.4, pp.785-97, 2001.
DOI : 10.1073/pnas.95.23.13652

R. Mellgren, Calpain Is Required for the Rapid, Calcium-dependent Repair of Wounded Plasma Membrane, Journal of Biological Chemistry, vol.1, issue.4, pp.2567-75, 2007.
DOI : 10.1083/jcb.200411109

S. Verstraeten, G. Mackenzie, and P. Oteiza, The plasma membrane plays a central role in cells response to mechanical stress, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.9, pp.1739-1788, 2010.
DOI : 10.1016/j.bbamem.2010.06.010

O. Brien, E. Salmon, E. Erickson, and H. , How calcium causes microtubule depolymerization, Cell Motility and the Cytoskeleton, vol.19, issue.2, pp.125-160, 1997.
DOI : 10.1091/mbc.4.10.1035

T. Togo, Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site, Journal of Cell Science, vol.119, issue.13, pp.2780-2786, 2006.
DOI : 10.1242/jcs.03006

P. Mcneil, Patching plasma membrane disruptions with cytoplasmic membrane, J Cell Sci, vol.113, pp.1891-902, 2000.

A. Reddy, E. Caler, and N. Andrews, Plasma Membrane Repair Is Mediated by Ca2+-Regulated Exocytosis of Lysosomes, Cell, vol.106, issue.2, pp.157-69, 2001.
DOI : 10.1016/S0092-8674(01)00421-4

S. Suetsugu, S. Kurisu, and T. Takenawa, Dynamic Shaping of Cellular Membranes by Phospholipids and Membrane-Deforming Proteins, Physiological Reviews, vol.265, issue.4, pp.1219-1267, 2014.
DOI : 10.1016/S1097-2765(02)00549-X

K. Miyake and P. Mcneil, Vesicle accumulation and exocytosis at sites of plasma membrane disruption, The Journal of Cell Biology, vol.131, issue.6, pp.1737-1782, 1995.
DOI : 10.1083/jcb.131.6.1737

J. Jaiswal, N. Andrews, and S. Simon, Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells, The Journal of Cell Biology, vol.112, issue.4, pp.625-660, 2002.
DOI : 10.1016/S0092-8674(00)81548-2

P. Mcneil, Repairing a torn cell surface: Make way, lysosomes to the rescue, J Cell Sci, vol.115, pp.873-882, 2002.

P. Mcneil and M. Terasaki, Coping with the inevitable: how cells repair a torn surface membrane, Nature Cell Biology, vol.1147, issue.5, pp.124-133, 2001.
DOI : 10.1016/0005-2736(93)90319-U

M. Corrotte, Author response, eLife, vol.286, p.926, 2013.
DOI : 10.7554/eLife.00926.024

J. Jaiswal, S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells, Nature Communications, vol.114, p.3795, 2014.
DOI : 10.1074/jbc.M408078200

N. Andrews, P. Almeida, and M. Corrotte, Damage control: cellular mechanisms of plasma membrane repair, Trends in Cell Biology, vol.24, issue.12, pp.734-776, 2014.
DOI : 10.1016/j.tcb.2014.07.008

C. Tam, Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair, The Journal of Cell Biology, vol.112, issue.6, pp.1027-1065, 2010.
DOI : 10.1083/jcb.140.1.39

A. Draeger and E. Babiychuk, Ceramide in Plasma Membrane Repair, Handb Exp Pharmacol, issue.216, pp.341-53, 2013.
DOI : 10.1007/978-3-7091-1511-4_17

B. Nichols, Caveosomes and endocytosis of lipid rafts, Journal of Cell Science, vol.116, issue.23, pp.4707-4721, 2003.
DOI : 10.1242/jcs.00840

V. Idone, -dependent endocytosis, The Journal of Cell Biology, vol.38, issue.5, pp.905-919, 2008.
DOI : 10.1073/pnas.051429498

V. Lariccia, Massive calcium???activated endocytosis without involvement of classical endocytic proteins, The Journal of General Physiology, vol.112, issue.1, pp.111-143, 2011.
DOI : 10.1083/jcb.140.1.39

A. Defour, Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion, Cell Death & Disease, vol.497, issue.6, p.1306, 2014.
DOI : 10.1113/jphysiol.1996.sp021790

URL : https://hal.archives-ouvertes.fr/hal-01311583

A. Draeger, Dealing with damage: Plasma membrane repair mechanisms, Biochimie, vol.107, pp.66-72, 2014.
DOI : 10.1016/j.biochi.2014.08.008

R. Parton and K. Simons, The multiple faces of caveolae, Nature Reviews Molecular Cell Biology, vol.278, issue.3, pp.185-94, 2007.
DOI : 10.1212/WNL.62.4.538

E. Bonilla, K. Fischbeck, and D. Schotland, Freeze-fracture studies of muscle caveolae in human muscular dystrophy

S. Repetto, Increased Number of Caveolae and Caveolin-3 Overexpression in Duchenne Muscular Dystrophy, Biochemical and Biophysical Research Communications, vol.261, issue.3, pp.547-50, 1999.
DOI : 10.1006/bbrc.1999.1055

B. Sinha, Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae, Cell, vol.144, issue.3, pp.402-415, 2011.
DOI : 10.1016/j.cell.2010.12.031

URL : https://hal.archives-ouvertes.fr/hal-00821331

U. Proske and D. Morgan, Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications, The Journal of Physiology, vol.535, issue.2, pp.333-378, 2001.
DOI : 10.1111/j.1469-7793.2001.00155.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7793.2001.00333.x/pdf

L. Waddell, Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch, Journal of Neuropathology & Experimental Neurology, vol.288, issue.Pt 9, pp.302-315, 2011.
DOI : 10.1111/j.1469-7793.2000.00597.x

E. Babiychuk, Blebbing confers resistance against cell lysis, Cell Death & Differentiation, vol.284, issue.1, pp.80-89, 2011.
DOI : 10.1016/0304-4157(94)90019-1

URL : http://www.nature.com/cdd/journal/v18/n1/pdf/cdd201081a.pdf

S. Codding, -Ethylmaleimide-sensitive Factor (NSF) Attachment Protein Receptors) and Stimulates Membrane Fusion in a Calcium-sensitive Manner, Journal of Biological Chemistry, vol.110, issue.28, pp.14575-84, 2016.
DOI : 10.1073/pnas.76.9.4350

J. Mcdade and D. Michele, Membrane damage-induced vesicle???vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin, Human Molecular Genetics, vol.20, issue.7, pp.1677-86, 2014.
DOI : 10.1083/jcb.200305131

A. Lek, Calpains, Cleaved Mini-DysferlinC72, and L-Type Channels Underpin Calcium-Dependent Muscle Membrane Repair, Journal of Neuroscience, vol.33, issue.12, pp.5085-94, 2013.
DOI : 10.1523/JNEUROSCI.3560-12.2013

URL : http://www.jneurosci.org/content/jneuro/33/12/5085.full.pdf

G. Redpath, Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair, Molecular Biology of the Cell, vol.11, issue.10, 2014.
DOI : 10.1242/jcs.02980

R. Mellgren, Calcium-dependent plasma membrane repair requires m- or ??-calpain, but not calpain-3, the proteasome, or caspases, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.12, pp.1886-93, 2009.
DOI : 10.1016/j.bbamcr.2009.09.013

URL : https://hal.archives-ouvertes.fr/hal-01610039

D. Hernandez-deviez, Caveolin Regulates Endocytosis of the Muscle Repair Protein, Dysferlin, Journal of Biological Chemistry, vol.285, issue.10, pp.6476-88, 2008.
DOI : 10.1111/j.1600-0854.2006.00433.x

C. Matsuda, The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle, Human Molecular Genetics, vol.10, issue.17, pp.1761-1767, 2001.
DOI : 10.1093/hmg/10.17.1761

P. Lin, Nonmuscle myosin IIA facilitates vesicle trafficking for MG53-mediated cell membrane repair, The FASEB Journal, vol.2009, issue.5, pp.1875-83, 2012.
DOI : 10.1038/ncb2067

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336789

C. Cai, MG53 Regulates Membrane Budding and Exocytosis in Muscle Cells, Journal of Biological Chemistry, vol.116, issue.5, pp.3314-3336, 2009.
DOI : 10.1128/JVI.79.14.8969-8978.2005

URL : http://www.jbc.org/content/284/5/3314.full.pdf

H. Zhu, Polymerase Transcriptase Release Factor (PTRF) Anchors MG53 Protein to Cell Injury Site for Initiation of Membrane Repair, Journal of Biological Chemistry, vol.286, issue.15, pp.12820-12824, 2011.
DOI : 10.1126/stke.2002.129.pl6

C. Cai, MG53 nucleates assembly of cell membrane repair machinery, Nature Cell Biology, vol.14, issue.1, pp.56-64, 2009.
DOI : 10.1074/jbc.M106944200

S. Potez, Sensitivities, Journal of Biological Chemistry, vol.1197, issue.20, pp.17982-91, 2011.
DOI : 10.1073/pnas.051429498

A. Rajab, Fatal Cardiac Arrhythmia and Long-QT Syndrome in a New Form of Congenital Generalized Lipodystrophy with Muscle Rippling (CGL4) Due to PTRF-CAVIN Mutations, PLoS Genetics, vol.194, issue.3, p.1000874, 2010.
DOI : 10.1371/journal.pgen.1000874.s005

E. Gazzerro, Caveolinopathies: from the biology of caveolin-3 to human diseases, European Journal of Human Genetics, vol.53, issue.2, pp.137-182, 2010.
DOI : 10.1161/CIRCULATIONAHA.106.634709

H. Li, Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair, Journal of Biological Chemistry, vol.152, issue.40, pp.24592-603, 2015.
DOI : 10.1152/ajpcell.00328.2012

J. Liu, Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury, Journal of Molecular and Cellular Cardiology, vol.80, pp.10-19, 2015.
DOI : 10.1016/j.yjmcc.2014.12.010

M. Lizarbe, Annexin-Phospholipid Interactions. Functional Implications, International Journal of Molecular Sciences, vol.287, issue.2, pp.2652-83, 2013.
DOI : 10.1074/jbc.M111.324616

A. Bouter, Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair, Nature Communications, vol.261, p.270, 2011.
DOI : 10.1126/science.8362244

URL : http://www.nature.com/articles/ncomms1270.pdf

D. Voges, Three-dimensional Structure of Membrane-bound Annexin V, Journal of Molecular Biology, vol.238, issue.2, pp.199-213, 1994.
DOI : 10.1006/jmbi.1994.1281

V. Gerke, C. Creutz, and S. Moss, Annexins: linking Ca2+ signalling to membrane dynamics, Nature Reviews Molecular Cell Biology, vol.133, issue.6, pp.449-61, 2005.
DOI : 10.1006/jsbi.2000.4337

T. Boye and J. Nylandsted, Abstract, Biological Chemistry, vol.2, issue.10, 2016.
DOI : 10.1515/hsz-2016-0171

E. Cocucci, The regulated exocytosis of enlargeosomes is mediated by a SNARE machinery that includes VAMP4, Journal of Cell Science, vol.121, issue.18, pp.2983-91, 2008.
DOI : 10.1242/jcs.032029

A. Rezvanpour, L. Santamaria-kisiel, and G. Shaw, The S100A10-Annexin A2 Complex Provides a Novel Asymmetric Platform for Membrane Repair, Journal of Biological Chemistry, vol.6, issue.46, pp.40174-83, 2011.
DOI : 10.1016/j.ceb.2007.07.001

J. Jaiswal, S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells, Nature Communications, vol.114, p.3795, 2014.
DOI : 10.1074/jbc.M408078200

A. Demonbreun, An actin-dependent annexin complex mediates plasma membrane repair in muscle, The Journal of Cell Biology, vol.3, issue.6, pp.705-723, 2016.
DOI : 10.1042/bj3490255

B. Borgonovo, Regulated exocytosis: a novel, widely expressed system, Nature Cell Biology, vol.20, issue.12, pp.955-62, 2002.
DOI : 10.1093/nar/20.11.2902

U. Roostalu and U. Strähle, In??Vivo Imaging of Molecular Interactions at Damaged Sarcolemma, Developmental Cell, vol.22, issue.3, pp.515-544, 2012.
DOI : 10.1016/j.devcel.2011.12.008

X. Cheng, The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy, Nature Medicine, vol.23, issue.10, pp.1187-92, 2014.
DOI : 10.1001/archneur.1970.00480280083010

S. Vergarajauregui, J. Martina, and R. Puertollano, -dependent Interactor of Mucolipin-1, Journal of Biological Chemistry, vol.10, issue.52, pp.36357-66, 2009.
DOI : 10.1093/hmg/ddh067

Y. Tian, W. J. Cebotaru, L. Wang, H. Guggino, and W. , Anoc- tamin5 is Related to Plasma Membrane Repair, JSM Regenerative Medicine & Bioengineering, vol.3, issue.1, p.1015, 2015.

L. Fatimathas and S. Moss, Annexins as disease modifiers, Histol Histopathol, vol.25, issue.4, pp.527-559, 2010.

C. Minetti, Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy, Nature Genetics, vol.44, issue.4, pp.365-373, 1998.
DOI : 10.1007/s004390050377

I. Richard, Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A, Cell, vol.81, issue.1, pp.27-40, 1995.
DOI : 10.1016/0092-8674(95)90368-2

V. Saccone, Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H, Human Mutation, vol.63, issue.2, pp.240-247, 2008.
DOI : 10.1002/humu.20633

V. Middel, Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair, Nature Communications, vol.7, p.12875, 2016.
DOI : 10.1021/nn4009388

A. Atanassoff, Microvesicle Shedding and Lysosomal Repair Fulfill Divergent Cellular Needs during the Repair of Streptolysin O-Induced Plasmalemmal Damage, PLoS ONE, vol.277, issue.2, p.89743, 2014.
DOI : 10.1371/journal.pone.0089743.s011

M. Krahn, A Naturally Occurring Human Minidysferlin Protein Repairs Sarcolemmal Lesions in a Mouse Model of Dysferlinopathy, Science Translational Medicine, vol.106, issue.1, pp.50-69, 2010.
DOI : 10.1016/S0166-0934(02)00138-6

URL : https://hal.archives-ouvertes.fr/hal-01610037