S. K. Ainala, E. Seol, J. R. Kim, and S. Park, Effect of culture medium on fermentative and CO-dependent H2 production activity in Citrobacter amalonaticus Y19, Int. J. Hydrog. Energy, vol.41, pp.6734-6742, 2016.

J. Akinbomi and M. J. Taherzadeh, Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes, vol.8, pp.4253-4272, 2015.

, Standard methods for the examination of water and wastewater, APHA Wash. USA, 2005.

, Anged-Quantités et types de déchets ménagers et assimilés, ANGED, 2016.

A. Natl, . Gest, and . Déchets,

H. Argun, P. Gokfiliz, and I. Karapinar, Biohydrogen Production: Sustainability of Current Technology and Future Perspective, pp.11-48, 2017.

R. Auria, C. Boileau, S. Davidson, L. Casalot, P. Christen et al., Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production, Biotechnol. Biofuels, vol.9, 2016.
DOI : 10.1186/s13068-016-0681-0

URL : https://hal.archives-ouvertes.fr/hal-01443222

C. Boileau, R. Auria, S. Davidson, L. Casalot, P. Christen et al., Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth, Biotechnol. Biofuels, vol.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443237

H. Bouallagui, H. Lahdheb, E. Ben-romdan, B. Rachdi, and M. Hamdi, Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition, J. Environ. Manage, vol.90, pp.1844-1849, 2009.

H. Bouallagui, Y. Touhami, R. Ben-cheikh, and M. Hamdi, Bioreactor performance in anaerobic digestion of fruit and vegetable wastes, Process Biochem, vol.40, pp.989-995, 2005.

M. Cappelletti, G. Bucchi, J. De-sousa-mendes, A. Alberini, S. Fedi et al., Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains, J. Chem. Technol. Biotechnol, vol.87, pp.1291-1301, 2012.

V. Cardoso, B. B. Romão, F. T. Silva, J. G. Santos, F. R. Batista et al., Hydrogen production by dark fermentation, Chem. Eng. Trans, vol.38, pp.481-486, 2014.

K. Chandrasekhar, Y. Lee, and D. Lee, Biohydrogen production: strategies to improve process efficiency through microbial routes, Int. J. Mol. Sci, vol.16, pp.8266-8293, 2015.
DOI : 10.3390/ijms16048266

URL : https://www.mdpi.com/1422-0067/16/4/8266/pdf

F. Chang and C. Lin, Calcium effect on fermentative hydrogen production in an anaerobic up-flow sludge blanket system, Water Sci. Technol, vol.54, p.105, 2006.
DOI : 10.2166/wst.2006.867

S. R. Chhabra, Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima, J. Biol. Chem, vol.278, pp.7540-7552, 2003.

S. E. Childers, M. Vargas, and K. M. Noll, Improved methods for cultivation of the extremely thermophilic bacterium Thermotoga neapolitana, Appl. Environ. Microbiol, vol.58, pp.3949-3953, 1992.

F. Culkin, The major constituents of seawater, Chemical Oceanography, pp.121-161, 1965.

G. Ippolito, L. Dipasquale, F. M. Vella, I. Romano, A. Gambacorta et al., Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana, Int. J. Hydrog. Energy, vol.35, pp.2290-2295, 2010.

D. Das, N. Khanna, and C. N. Dasgupta, Biohydrogen Production: Fundamentals and Technology Advances, 2014.

G. De-gioannis, A. Muntoni, A. Polettini, and R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manage, vol.33, pp.1345-1361, 2013.

T. De-vrije, R. R. Bakker, M. A. Budde, M. H. Lai, A. E. Mars et al., Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Biotechnol. Biofuels, vol.2, p.12, 2009.

T. De-vrije, M. A. Budde, S. J. Lips, R. R. Bakker, A. E. Mars et al., Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int. J. Hydrog. Energy, 3rd Asian Bio Hydrogen Symposium, vol.35, pp.13206-13213, 2010.

R. Fourati, M. Tedetti, C. Guigue, M. Goutx, N. Garcia et al., Sources and spatial distribution of dissolved aliphatic and polycyclic aromatic hydrocarbons in surface coastal waters of the Gulf of Gabès, Prog. Oceanogr, 2017.

E. I. Garcia-peña, P. Parameswaran, D. W. Kang, M. Canul-chan, and R. Krajmalnik-brown, Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology, Bioresour. Technol, vol.102, pp.9447-9455, 2011.

J. Gomez-romero, A. Gonzalez-garcia, I. Chairez, L. Torres, and E. I. García-peña, Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste, Int. J. Hydrog. Energy, vol.39, pp.12541-12550, 2014.

X. M. Guo, E. Trably, E. Latrille, H. Carrère, and J. Steyer, Hydrogen production from agricultural waste by dark fermentation: a review, Int. J. Hydrog. Energy, vol.35, pp.10660-10673, 2010.

R. Huber, M. ;. Hannig, S. Falkow, and E. Rosenberg, Thermotogales. In: Dworkin, pp.899-922, 2006.

R. Huber, T. A. Langworthy, H. König, M. Thomm, C. R. Woese et al., Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 C, Arch. Microbiol, vol.144, pp.324-333, 1986.

C. S. James, Analytical Chemistry of Foods, 2013.

A. Juszczak, S. Aono, and M. W. Adams, The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten, J. Biol. Chem, vol.266, pp.13834-13841, 1991.

S. Kanchanasutaa, S. Haosagul, and N. Pisutpaisal, Metabolic flux analysis of hydrogen production from rice starch by anaerobic sludge under varying organic loading, Chem. Eng, p.49, 2016.

R. Lakhal, R. Auria, S. Davidson, B. Ollivier, M. Durand et al., Oxygen uptake rates in the hyperthermophilic anaerobe Thermotoga maritima grown in a bioreactor under controlled oxygen exposure: clues to its defence strategy against oxidative stress, Arch. Microbiol, vol.193, pp.429-438, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00808256

Y. J. Lee, T. Miyahara, and T. Noike, Effect of iron concentration on hydrogen fermentation, Bioresour. Technol, vol.80, pp.227-231, 2001.

J. T. Leema, R. Kirubagaran, N. V. Vinithkumar, P. S. Dheenan, and S. Karthikayulu, High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater, Bioresour. Technol, vol.101, pp.9221-9227, 2010.

Q. Liu, W. Chen, X. Zhang, L. Yu, J. Zhou et al., Phosphate enhancing fermentative hydrogen production from substrate with municipal solid waste composting leachate as a nutrient, Bioresour. Technol, vol.190, pp.431-437, 2015.

M. Ljunggren and G. Zacchi, Techno-economic evaluation of a two-step biological process for hydrogen production, Biotechnol. Prog. NA-NA, 2009.

A. Marone, G. Izzo, L. Mentuccia, G. Massini, P. Paganin et al., Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production, Renew. Energy, vol.68, pp.6-13, 2014.

B. T. Maru, A. A. Bielen, S. W. Kengen, M. Constantí, and F. Medina, Biohydrogen production from glycerol using Thermotoga spp, Energy Proc, vol.29, pp.300-307, 2012.

J. Mason and K. Zweibel, Baseline model of a centralized pv electrolytic hydrogen system, Int. J. Hydrog. Energy, vol.32, pp.2743-2763, 2007.

E. Mizuki, T. Akao, and T. Saruwatari, Inhibitory effect of Citrus unshu peel on anaerobic digestion, Biol. Wastes, vol.33, issue.90, p.90002, 1990.

S. V. Mohan, Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation, Sustainable Biotechnology, pp.129-164, 2010.

T. A. Ngo and H. T. Bui, Biohydrogen production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads, J. Technol. Innov. Renew. Energy, vol.2, p.231, 2013.

T. Nguyen, J. Pyokim, M. Sunkim, Y. Kwanoh, and S. Sim, Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation, Int. J. Hydrog. Energy, vol.33, pp.1483-1488, 2008.

V. V. Pathak, S. Ahmad, A. Pandey, V. V. Tyagi, D. Buddhi et al., Deployment of fermentative biohydrogen production for sustainable economy in Indian scenario: practical and policy barriers with recent progresses, Curr. Sustain. Energy Rep, vol.3, pp.101-107, 2016.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, Int. J. Mol. Sci, vol.16, pp.12578-12600, 2015.

J. E. Ramírez-morales, E. Tapia-venegas, J. Toledo-alarcón, and G. Ruiz-filippi, Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation, Water Sci Technol. J. Int. Assoc. Water Pollut. Res, vol.71, pp.1271-1285, 2015.

K. Raunkjaer, T. Hvitved-jacobsen, and P. H. Nielsen, Measurement of pools of protein, carbohydrate and lipid in domestic wastewater, Water Res, vol.28, pp.90261-90266, 1994.

G. Ravot, B. Ollivier, M. Magot, B. Patel, J. Crolet et al., Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales, Appl. Environ. Microbiol, vol.61, pp.2053-2055, 1995.

K. D. Rinker and R. M. Kelly, Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima, Biotechnol. Bioeng, vol.69, pp.2-7, 2000.

R. T. Romano and R. Zhang, Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor, Bioresour. Technol, vol.99, pp.631-637, 2008.

B. Ruggeri and T. Tommasi, Efficiency and efficacy of pre-treatment and bioreaction for bio-H2 energy production from organic waste, Int. J. Hydrog. Energy, vol.37, pp.6491-6502, 2012.

C. Schröder, M. Selig, and P. Schönheit, Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway, Arch. Microbiol, vol.161, pp.460-470, 1994.

G. J. Schut, G. L. Lipscomb, Y. Han, J. S. Notey, R. M. Kelly et al., The order thermococcales and the family thermococcaceae, The Prokaryotes, pp.363-383, 2014.

S. Shafiee and E. Topal, When will fossil fuel reserves be diminished?, Energy Policy, vol.37, pp.181-189, 2009.

X. F. Sun, R. C. Sun, J. Tomkinson, and M. S. Baird, Preparation of sugarcane bagasse hemicellulosic succinates using NBS as a catalyst, Carbohydr. Polym, vol.53, pp.483-495, 2003.

A. Tenca, A. Schievano, F. Perazzolo, F. Adani, and R. Oberti, Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: Maximizing stable production without pH control, Bioresour. Technol, vol.102, pp.8582-8588, 2011.

J. A. Turner, Sustainable hydrogen production, Science, vol.305, pp.972-974, 2004.

Y. Ueda, T. Tsubuku, and R. Miyajima, Composition of sulfur-containing components in onion and their flavor characters, Biosci. Biotechnol. Biochem, vol.58, pp.108-110, 1994.

B. Wu, C. K. Tseng, and W. Xiang, Large-scale cultivation of Spirulina in seawater based culture medium, Bot. Mar, vol.36, pp.99-102, 1993.

. Yadvika, . Santosh, T. R. Sreekrishnan, S. Kohli, and V. Rana, Enhancement of biogas production from solid substrates using different techniques-a review, Bioresour. Technol, vol.95, pp.1-10, 2004.

Y. Zhang and J. Shen, Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria, Int. J. Hydrog. Energy, vol.31, pp.441-446, 2006.