C. C. Araújo and L. L. Leon, Biological activities of Curcuma longa L., Mem??rias do Instituto Oswaldo Cruz, vol.43, issue.5, pp.723-728, 2001.
DOI : 10.1111/j.1600-0773.1978.tb02240.x

J. M. Li, Y. C. Li, L. D. Kong, and Q. H. Hu, Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats, Hepatology, vol.643, issue.5, pp.1555-1566, 2010.
DOI : 10.1007/978-0-387-75681-3_39

G. S. Seetharamaiah and N. Chandrasekhara, Comparative hypocholesterolemic activities of oryzanol, curcumin and ferulic acid in rats, J. Food Sci. Technol, vol.30, pp.249-252, 1993.

S. Mouzaoui, I. Rahim, and B. Djerdjouri, Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-??-induced oxidative stress, colitis and hepatotoxicity in mice, International Immunopharmacology, vol.12, issue.1, pp.302-311, 2012.
DOI : 10.1016/j.intimp.2011.10.010

J. J. Kuo, H. H. Chang, T. H. Tsai, and T. Lee, Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis, International Journal of Molecular Medicine, vol.30, issue.3, pp.673-679, 2012.
DOI : 10.3892/ijmm.2012.1049

S. K. Shin, T. Y. Ha, R. A. Mcgregor, and M. S. Choi, Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism, Molecular Nutrition & Food Research, vol.20, issue.12, pp.1829-1840, 2011.
DOI : 10.1161/01.ATV.20.8.1860

F. Tranchida, Metabolomic and Lipidomic Analysis of Serum Samples following Curcuma longa Extract Supplementation in High-Fructose and Saturated Fat Fed Rats, PLOS ONE, vol.62, issue.11, p.135948, 2015.
DOI : 10.1371/journal.pone.0135948.s004

URL : https://hal.archives-ouvertes.fr/hal-01476665

S. M. Grundy, Multifactorial causation of obesity: implications for prevention, The American Journal of Clinical Nutrition, vol.67, issue.3, pp.563-572, 1998.
DOI : 10.1093/ajcn/67.3.563S

H. Basciano, L. Federico, and K. Adeli, Fructose, insulin resistance, and metabolic dyslipidemia, Nutrition & Metabolism, vol.2, issue.1, p.5, 2005.
DOI : 10.1186/1743-7075-2-5

M. B. Vos and J. Lavine, Dietary fructose in nonalcoholic fatty liver disease, Hepatology, vol.120, issue.6, pp.2525-2531, 2013.
DOI : 10.1161/CIRCULATIONAHA.109.192627

H. C. Keun and T. J. Athersuch, Nuclear Magnetic Resonance (NMR)-Based Metabolomics, Methods Mol. Biol, vol.708, pp.321-334, 2011.
DOI : 10.1007/978-1-61737-985-7_19

O. Beckonert, High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues, Nature Protocols, vol.112, issue.6, pp.1019-1032, 2010.
DOI : 10.1111/j.1471-4159.1981.tb01608.x

M. André, Complete Protocol for Slow-Spinning High-Resolution Magic-Angle Spinning NMR Analysis of Fragile Tissues, Analytical Chemistry, vol.86, issue.21, pp.10749-10754, 2014.
DOI : 10.1021/ac502792u

M. Renault, L. Shintu, M. Piotto, and S. Caldarelli, Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples, Scientific Reports, vol.149, issue.1, p.3349, 2013.
DOI : 10.1006/jmre.2001.2287

URL : https://hal.archives-ouvertes.fr/hal-00949077

T. L. Fuss and L. L. Cheng, Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS), Metabolites, vol.8, issue.4, p.11, 2016.
DOI : 10.3892/or.2012.1931

W. Li, Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells, The Analyst, vol.338, issue.7, pp.777-781, 2006.
DOI : 10.1039/b605110c

N. J. Serkova, Metabolic profiling of livers and blood from obese Zucker rats, Journal of Hepatology, vol.44, issue.5, pp.956-962, 2006.
DOI : 10.1016/j.jhep.2005.07.009

H. Kim, Metabolomic Analysis of Livers and Serum from High-Fat Diet Induced Obese Mice, Journal of Proteome Research, vol.10, issue.2, pp.722-731, 2011.
DOI : 10.1021/pr100892r

N. Schauer, GC-MS libraries for the rapid identification of metabolites in complex biological samples, FEBS Letters, vol.143, issue.6, pp.1332-1337, 2005.
DOI : 10.1016/S0378-4347(00)81792-2

M. M. Koek, R. H. Jellema, J. Van-der-greef, A. C. Tas, and T. Hankemeier, Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives, Metabolomics, vol.854, issue.1???2, pp.307-328, 2011.
DOI : 10.1016/j.jchromb.2008.05.001

F. Tranchida, Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats, Journal of Zhejiang University SCIENCE B, vol.13, issue.4, pp.307-317, 2012.
DOI : 10.1631/jzus.B1100090

URL : https://hal.archives-ouvertes.fr/hal-01735144

S. Slow, M. Lever, S. T. Chambers, and P. M. George, Plasma dependent and independent accumulation of betaine in male and female rat tissues, Physiol. Res, vol.58, pp.403-410, 2009.

J. Tsai, Inflammatory NF-??B activation promotes hepatic apolipoprotein B100 secretion: evidence for a link between hepatic inflammation and lipoprotein production, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.296, issue.6, pp.1287-1298, 2009.
DOI : 10.1124/mol.107.043976

T. Hirano, J. C. Mamo, M. E. Poapst, A. Kuksis, and G. Steiner, Impaired very low-density lipoprotein-triglyceride catabolism in acute and chronic fructose-fed rats, American Journal of Physiology-Endocrinology and Metabolism, vol.26, issue.4, pp.559-565, 1989.
DOI : 10.2337/diab.27.12.1215

Z. Spolarics and M. Meyenhofer, Augmented resistance to oxidative stress in fatty rat livers induced by a short-term sucrose-rich diet, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1487, issue.2-3, pp.190-200, 2000.
DOI : 10.1016/S1388-1981(00)00093-7

N. Sreejayan, M. N. Rao, K. I. Priyadarsini, and T. P. Devasagayamc, Inhibition of radiation-induced lipid peroxidation by curcumin, International Journal of Pharmaceutics, vol.151, issue.1, pp.127-130, 1997.
DOI : 10.1016/S0378-5173(97)04900-4

J. T. Piper and S. Awasthi, Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver, The International Journal of Biochemistry & Cell Biology, vol.30, issue.4, pp.445-456, 1998.
DOI : 10.1016/S1357-2725(98)00015-6

D. Castro, G. S. Vannucchi, and H. , Dietary Docosahexaenoic Acid and Eicosapentaenoic Acid Influence Liver Triacylglycerol and Insulin Resistance in Rats Fed a High-Fructose Diet, Marine Drugs, vol.70, issue.12, pp.1864-1881, 2015.
DOI : 10.1016/0003-2697(68)90092-4

M. M. Abdullah, Effects of long-term consumption of a high-fructose diet on conventional cardiovascular risk factors in Sprague-Dawley rats, Molecular and Cellular Biochemistry, vol.188, issue.1-2, pp.247-256, 2009.
DOI : 10.1016/0005-2760(94)90009-4

F. Galli, Vitamin E, lipid profile, and peroxidation in hemodialysis patients, Kidney Int, vol.78, pp.148-154, 2001.

H. Sampath, M. Miyazaki, A. Dobrzyn, and J. M. Ntambi, Stearoyl-CoA Desaturase-1 Mediates the Pro-lipogenic Effects of Dietary Saturated Fat, Journal of Biological Chemistry, vol.4, issue.4, pp.2483-2493, 2007.
DOI : 10.1126/science.1071527

K. M. Waters and J. M. Ntambis, Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice, J. Biol. Chem, vol.269, pp.27773-27777, 1994.

U. N. Das, A defect in the activity of ??6 and ??5 desaturases may be a factor predisposing to the development of insulin resistance syndrome, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.72, issue.5, pp.343-350, 2005.
DOI : 10.1016/j.plefa.2005.01.002

J. H. Exton and C. Park, Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats, J. Biol. Chem, vol.242, pp.2622-2636, 1967.

H. Y. Koo, Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1782, issue.5, pp.341-348, 2008.
DOI : 10.1016/j.bbadis.2008.02.007

URL : https://hal.archives-ouvertes.fr/hal-00562826

L. H. Nilsson and E. Hultman, Liver and Muscle Glycogen in Man after Glucose and Fructose Infusion, Scandinavian Journal of Clinical and Laboratory Investigation, vol.2, issue.298, pp.5-10, 1974.
DOI : 10.3109/00365517309084355

P. D. Whitton and D. A. Hems, Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats, Biochemical Journal, vol.150, issue.2, pp.153-165, 1975.
DOI : 10.1042/bj1500153

J. H. Thurston, E. M. Jones, and R. E. Hauhart, Decrease and Inhibition of Liver Glycogen Phosphorylase After Fructose: An Experimental Model for the Study of Hereditary Fructose Intolerance, Diabetes, vol.23, issue.7, pp.597-604, 1974.
DOI : 10.2337/diab.23.7.597

G. Van-den-berghe, L. Hue, and H. G. Hers, Effect of administration of the fructose on the glycogenolytic action of glucagon. An investigation of the pathogeny of hereditary fructose intolerance, Biochemical Journal, vol.134, issue.2, pp.637-645, 1973.
DOI : 10.1042/bj1340637

M. E. Brosnan and J. Brosnan, Hepatic glutamate metabolism: a tale of 2 hepatocytes, The American Journal of Clinical Nutrition, vol.90, issue.suppl, pp.857-861, 2009.
DOI : 10.3945/ajcn.2009.27462DD

P. H. Pritchard and D. E. Vance, Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes, Biochemical Journal, vol.196, issue.1, pp.261-267, 1981.
DOI : 10.1042/bj1960261

Z. Pavlovic and M. Bakovic, Regulation of Phosphatidylethanolamine Homeostasis???The Critical Role of CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2), International Journal of Molecular Sciences, vol.21, issue.2, pp.2529-2550, 2013.
DOI : 10.1577/H07-056.1

Z. M. Yao and D. E. Vance, The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes, J. Biol. Chem, vol.263, pp.2998-3004, 1988.

M. Dumas, Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice, Proc. Natl. Acad. Sci. USA 103, pp.12511-12516, 2006.
DOI : 10.1016/S0169-7439(98)00109-9

A. J. Wolfe, The Acetate Switch, Microbiology and Molecular Biology Reviews, vol.69, issue.1, pp.12-50, 2005.
DOI : 10.1128/MMBR.69.1.12-50.2005

R. Scholz and H. Nohl, Mechanism of the Stimulatory Effect of Fructose on Ethanol Oxidation in Perfused Rat Liver, European Journal of Biochemistry, vol.18, issue.2, pp.449-458, 1976.
DOI : 10.1159/000175623

N. Tygstrup, K. Winkler, and F. Lundquist, The Mechanism of the Fructose Effect on the Ethanol Metabolism of the Human Liver*, Journal of Clinical Investigation, vol.44, issue.5, pp.817-830, 1965.
DOI : 10.1172/JCI105194

L. L. Listenberger, Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proc. Natl. Acad. Sci. USA, pp.3077-3082, 2003.
DOI : 10.1146/annurev.bi.49.070180.002331

K. C. Srivastava, A. Bordia, and S. K. Verma, Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.52, issue.4, pp.223-227, 1995.
DOI : 10.1016/0952-3278(95)90040-3

Y. Jung, Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis, The Analyst, vol.12, issue.23, pp.5597-5606, 2012.
DOI : 10.1080/10412905.2000.9699553

M. P. Mckeever, D. G. Weir, A. Molloy, and J. M. Scott, Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat, Clinical Science, vol.81, issue.s25, pp.551-556, 1991.
DOI : 10.1042/cs0810551

S. A. Craig, Betaine in human nutrition, The American Journal of Clinical Nutrition, vol.35, issue.3, pp.539-549, 2004.
DOI : 10.1097/00005768-200305001-01726

P. M. Ueland, Choline and betaine in health and disease, Journal of Inherited Metabolic Disease, vol.370, issue.Suppl 2, pp.3-15, 2011.
DOI : 10.1042/bj20021523

K. K. Kharbanda, Betaine administration corrects ethanol-induced defective VLDL secretion, Molecular and Cellular Biochemistry, vol.46, issue.1-2, pp.75-78, 2009.
DOI : 10.1016/0005-2760(88)90009-4

Z. Yao and D. Vance, The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes, J. Biol. Chem, vol.263, pp.2998-3004, 1988.

L. Hoffmann, Osmotic regulation of hepatic betaine metabolism, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.136, issue.9, pp.835-846, 2013.
DOI : 10.1152/ajprenal.00464.2011

E. Kathirvel, Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.77, issue.5, pp.1068-1177, 2010.
DOI : 10.1042/bj20021523

H. C. Bertram, L. B. Larsen, X. Chen, and P. B. Jeppesen, Impact of High-Fat and High-Carbohydrate Diets on Liver Metabolism Studied in a Rat Model with a Systems Biology Approach, Journal of Agricultural and Food Chemistry, vol.60, issue.2, pp.676-684, 2012.
DOI : 10.1021/jf203994k

C. R. Day and S. A. Kempson, Betaine chemistry, roles, and potential use in liver disease, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1860, issue.6, pp.1098-106, 2016.
DOI : 10.1016/j.bbagen.2016.02.001

C. Schäfer, -methyltransferase expression in H4IIE rat hepatoma cells, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.292, issue.4, pp.1089-1098, 2007.
DOI : 10.1053/gast.1996.v110.pm8613062

C. V. Delgado-reyes and T. A. Garrow, -methyltransferase expression in guinea pig liver and kidney, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.288, issue.1, pp.182-187, 2005.
DOI : 10.1016/0305-0491(85)90278-0

G. K. Azad, V. Singh, M. J. Thakare, S. Baranwal, and R. S. Tomar, Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae, BMC Microbiology, vol.65, issue.3, pp.1-11, 2014.
DOI : 10.1016/S0006-2952(02)01517-4

K. S. Rajani, Evaluation of antioxidant activity in ethanolic extracts of five Curcuma species, pp.243-248, 2011.

S. Reagan-shaw, M. Nihal, and N. Ahmad, Dose translation from animal to human studies revisited, The FASEB Journal, vol.22, issue.3, pp.659-661, 2008.
DOI : 10.1093/jnci/94.24.1883

A. M. Neyrinck, Curcuma longa Extract Associated with White Pepper Lessens High Fat Diet-Induced Inflammation in Subcutaneous Adipose Tissue, PLoS ONE, vol.108, issue.11, p.81252, 2013.
DOI : 10.1371/journal.pone.0081252.s001

S. M. El-bahr, Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats, BMC Complementary and Alternative Medicine, vol.10, issue.1, p.368, 2013.
DOI : 10.1097/01.LAB.0000032411.41603.C2

I. Mohanty, Protective effects of Curcuma longa on ischemia-reperfusion induced myocardial injuries and their mechanisms, Life Sciences, vol.75, issue.14, pp.1701-1711, 2004.
DOI : 10.1016/j.lfs.2004.02.032

P. S. Babu and K. Srinivasan, Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats, Molecular and Cellular Biochemistry, vol.166, issue.1/2, pp.169-175, 1997.
DOI : 10.1023/A:1006819605211

A. R. Moghadam, Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress, BMC Complementary and Alternative Medicine, vol.143, issue.1, p.246, 2015.
DOI : 10.1016/j.pharmthera.2014.02.007

K. I. Seo, mice, Molecular Nutrition & Food Research, vol.39, issue.9, pp.995-1004, 2008.
DOI : 10.1161/01.ATV.15.10.1688

URL : https://hal.archives-ouvertes.fr/hal-00023826

N. 'guessan and P. , Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis, Antioxidants & Redox Signaling, vol.15, issue.6, pp.1639-1653, 2011.
DOI : 10.1089/ars.2010.3553

URL : https://hal.archives-ouvertes.fr/inserm-01270303

S. Naz, M. Vallejo, A. García, and C. Barbas, Method validation strategies involved in non-targeted metabolomics, Journal of Chromatography A, vol.1353, pp.99-105, 2014.
DOI : 10.1016/j.chroma.2014.04.071

J. N. Clore, Changes in phsophatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man, Metabolism, vol.49, issue.2, pp.232-238, 2000.
DOI : 10.1016/S0026-0495(00)91455-0

A. Bax and D. G. Davis, MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy, Journal of Magnetic Resonance (1969), vol.65, issue.2, pp.355-360, 1985.
DOI : 10.1016/0022-2364(85)90018-6

G. Bodenhausen and D. J. Ruben, Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy, Chemical Physics Letters, vol.69, issue.1, pp.185-189, 1980.
DOI : 10.1016/0009-2614(80)80041-8

Y. Vasavi, Heteronuclear Multible Bond Correlation Spectroscopy-An Overview, Int. J. Pharm. Tech. Res, vol.3, pp.1410-1422, 2011.

B. M. Beckwith-hall, Nuclear Magnetic Resonance Spectroscopic and Principal Components Analysis Investigations into Biochemical Effects of Three Model Hepatotoxins, Chemical Research in Toxicology, vol.11, issue.4, pp.260-272, 1998.
DOI : 10.1021/tx9700679

M. E. Bollard, High-resolution1H and1H-13C magic angle spinning NMR spectroscopy of rat liver, Magnetic Resonance in Medicine, vol.31, issue.2, pp.201-207, 2000.
DOI : 10.1016/0079-6565(95)01017-3

F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, H NMR Metabonomics, Analytical Chemistry, vol.78, issue.13, pp.4281-4290, 2006.
DOI : 10.1021/ac051632c

J. Trygg and S. Wold, Orthogonal projections to latent structures (O-PLS), Journal of Chemometrics, vol.10, issue.3, pp.119-128, 2002.
DOI : 10.1002/(SICI)1099-128X(199609)10:5/6<453::AID-CEM444>3.0.CO;2-P

L. Eriksson, J. Trygg, and S. Wold, CV-ANOVA for significance testing of PLS and OPLS?? models, Journal of Chemometrics, vol.13, issue.11-12, pp.594-600, 2008.
DOI : 10.1016/j.chemolab.2006.09.008