. E. De, . Gu, . Km, B. Tc-delprat, P. Escudié et al., Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies On the regular representation of a nonunimodular locally compact group theory and the classification of function spaces, NSF-CBMS Conf. Series (1991). [Ga]: D. Gabor, Theory of communication Decomposition of Hardy functions into wavelets of constant shape, SIAM J. Math. an, pp.644-664, 1946.

. Gr, . Mo, . A. Pa, J. Grossmann, T. Morlet et al., Transforms associated to squareintegrable group representations I, Théorie de Mackey et méthode des orbites selon M. Duflo, pp.303-346, 1985.

S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets, Meyer, Ondelettes et applications Meyer, Ondelettes et opérateurs I: ondelettes, pp.617-643, 1989.
DOI : 10.1109/18.119727

URL : http://ftp.gwdg.de/pub/languages/nyu.edu/tech-reports/tr549-R245.ps.Z

. Pi, W. Ma-picinbono, and . Martin, Représentation des signaux par amplitude et phase instantanées Harmonic analysis on the Heisenberg nilpotent Lie group, Pitman series Wavelets associated with representations of the affine Weyl- Heisenberg group Torrésani, Time-Frequency representations: wavelet packets and optimal decomposition, Generalized coherent states and their applications Special functions and theory of group representations, pp.38179-190, 1968.