S. T. Ali, J. P. Antoine, J. P. Gazeau, and U. A. Mmller, Coherent states and their generalizations: an overview, Rev. Math. Phys, vol.7, 1995.

S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and B. Wolf, The Wigner operator and Wigner function for general Lie groups, 1999.

P. Aniello, G. Cassinelli, E. Devito, and A. Levrero, Wavelet transforms and discrete frames associated to semidirect products, Journal of Mathematical Physics, vol.5, issue.8, pp.3965-3973, 1998.
DOI : 10.1016/0040-9383(63)90026-0

J. P. Antoine, Y. Kougagou, D. Lambert, and B. Torrrsani, An algebraic approach to discrete dilations, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00814185

F. Auger and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Transactions on Signal Processing, vol.43, issue.5, pp.1068-1089, 1993.
DOI : 10.1109/78.382394

D. Bernier and M. Taylor, Wavelets from Square-Integrable Representations, SIAM Journal on Mathematical Analysis, vol.27, issue.2, p.5944608, 1996.
DOI : 10.1137/S0036141093256265

P. Bertrand and J. Bertrand, Reprrsentation temps-frrquence des signaux large bande, La Recherche Arospatiale, vol.5, p.2777283, 1985.

P. Bertrand and J. Bertrand, A new class of Wigner functions with extended covariance properties, 1985.

R. E. Blahut, W. Miller-jr, and C. H. Wilcox, Radar and Sonar, Part I, 1991.

A. Calderrn, Intermediate spaces and interpolation, the complex method, Studia Mathematica, vol.24, issue.2, p.113, 1964.
DOI : 10.4064/sm-24-2-113-190

R. Carmona, W. L. Hwang, and B. Torrrsani, Practical Time-Frequency Analysis: Gabor and wavelet transforms, with an implementation in S, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01302102

E. Chassande-mottin, I. Daubechies, F. Auger, and P. Flandrin, Differential reassignment, Diierential Reassignment, pp.293-294, 1997.
DOI : 10.1109/97.633772

I. Daubechies, Ten Lectures on Wavelets, CBMS-NFS Regional Series in Applied Mathematics, 1992.

I. Daubechies and S. Maes, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models, Wavelets in Medicine and Biology, pp.527-546, 1996.

L. Daudet, M. Morvidone, and B. Torrrsani, Time-frequency and time-scale vector elds for deforming time-frequency and time-scale representations, Proceedings of the SPIE conference Wavelet Applications in image and signal processing VII, 1999.
DOI : 10.1117/12.366763

URL : http://protis.univ-mrs.fr/~torresan/papers/Denver.ps.gz

N. Delprat, B. Escudii, P. Guillemain, R. Kronland-martinet, . Ph et al., Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies, IEEE Transactions on Information Theory, vol.38, issue.2, p.6444664, 1992.
DOI : 10.1109/18.119728

URL : https://hal.archives-ouvertes.fr/hal-01222729

M. Duuo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. An, vol.21, pp.209-243, 1976.

P. Flandrin, Temps-Frrquence. Traitt des Nouvelles Technologies, ssrie Traitement du Signal, Hermes; in French, 1993.

M. Folland, Harmonic Analysis of Phase Space

H. Ffhr, Wavelet frames and admissibility in higher dimensions, Journal of Mathematical Physics, vol.55, issue.4, pp.6353-6366, 1996.
DOI : 10.2307/1969423

C. Gonnet and B. Torrrsani, Local frequency analysis with two-dimensional benin: submitted to World Scientiic on, p.22, 1984.

A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. of Math. An, vol.15, p.7233736, 1984.

A. Grossmann, J. Morlet, and T. Paul, Transforms associated with square integrable group representations I, J. Math. Phys, vol.27, p.247332479, 1985.
DOI : 10.1515/9781400827268.140

A. Grossmann, J. Morlet, and T. Paul, Transforms associated with square integrable group representations II, Ann. Inst. H. Poincar, vol.45, 1986.
DOI : 10.1515/9781400827268.140

K. Kodera, R. Gendrin, and C. De-villedary, Analysis of time-varying signals with small BT values, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, p.64, 1978.
DOI : 10.1109/TASSP.1978.1163047

W. Kozek, Spectral Estimation in Non-Stationary Environments, 1996.

E. H. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, Journal of Mathematical Physics, vol.6, issue.3, pp.594-599, 1990.
DOI : 10.1016/0001-8708(76)90184-5

G. Mackey, Theory of unitary group representations, Univ, 1976.

S. Mallat, A Wavelet Tour of Signal Processing, 1998.

S. Mallat, G. Papanicolaou, and Z. Zhang, Adaptive covariance estimation of locally stationary processes, The Annals of Statistics, vol.26, issue.1, p.1147, 1995.
DOI : 10.1214/aos/1030563977

R. J. Mcaulay and T. F. Quatieri, Speech analysis/Synthesis based on a sinusoidal representation, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.4, p.7444754, 1986.
DOI : 10.1109/TASSP.1986.1164910

Y. Meyer, Ondelettes et oprateurs,I: Ondelettes; II: Oprateurs de Calderrn- Zygmund; III: (with R. Coifman) Oprateurs multilinnaires, Hermann. (English translation of rst volume is published by, 1989.

H. Moscovici, Coherent state representations of nilpotent Lie groups, Communications in Mathematical Physics, vol.26, issue.1, pp.63-68, 1977.
DOI : 10.1007/BF01609836

H. Moscovici and A. Verona, Coherent states and square-integrable representations, Ann. I.H.P., Physique Thhorique, vol.9, pp.139-156, 1978.

R. Murenzi, Ondelettes multidimensionnelles et application l'analyse d'images, 1990.

M. B. Priestley, Evolutionary Spectra and Non-Stationary Processes, J. Roy. Stat. Soc, p.27, 1965.

R. Ryan and B. Torrrsani, Introduction to Continuous Wavelet Analysis, SIAM, 1999.

W. Schempp, Harmonic analysis on the Heisenberg nilpotent Lie group, Pitman series, p.147, 1986.

J. Ville, Thhorie et applications, de la notion de signal analytique. Cables et Transmissions 2, 61174. Translated into English by I. Selin, RAND Corp, 1948.

E. P. Wigner, On the quantum corrections for the thermodynamic equilibrium, Phys. Rev, vol.40, p.7499759, 1932.

A. Zygmund, Trigonometric Series, 1959.