Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue Physical Review B: Condensed Matter and Materials Physics (1998-2015) Année : 2018

Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride

Résumé

We calculate the two-photon absorption in bulk and single layer hexagonal boron nitride (hBN) both by an ab-initio real-time Bethe-Salpeter approach and by a the real-space solution of the excitonic problem in tight-binding formalism. The two-photon absorption obeys different selection rules from those governing linear optics and therefore provides complementary information on the electronic excitations of hBN. Combining the results from the simulations with a symmetry analysis we show that two-photon absorption is able to probe the lowest energy $1s$ states in the single layer hBN and the lowest dark degenerate dark states of bulk hBN. This deviation from the "usual" selection rules based on the continuous hydrogenic model is explained within a simple model that accounts for the crystalline symmetry. The same model can be applied to other two-dimensional materials with the same point-group symmetry, such as the transition metal chalcogenides. We also discuss the selection rules related to the inversion symmetry of the bulk layer stacking.
Fichier principal
Vignette du fichier
PhysRevB.98.165126.pdf (596.46 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01755879 , version 1 (31-01-2019)

Licence

Paternité

Identifiants

Citer

Claudio Attaccalite, Myrta Grüning, Hakim Amara, Sylvain Latil, François Ducastelle. Two-photon absorption in two-dimensional materials: The case of hexagonal boron nitride. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2018, 98 (16), pp.165126. ⟨10.1103/PhysRevB.98.165126⟩. ⟨hal-01755879⟩
201 Consultations
260 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More