Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng et al., Giant two-photon absorption in monolayer mos2, Laser Photonics Rev, vol.9, p.427, 2015.

S. Zhang, N. Dong, N. Mcevoy, M. O'brien, S. Winters et al., Direct observation of degenerate two-photon absorption and its saturation in ws2 and mos2 monolayer and few-layer films, ACS nano, vol.9, p.7142, 2015.

A. W. Schell, T. T. Tran, H. Takashima, S. Takeuchi, and I. Aharonovich, Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers, APL Photonics, vol.1, p.91302, 2016.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak et al., Tightly Bound Excitons in Monolayer WSe 2, Phys. Rev. Lett, vol.113, p.26803, 2014.

P. R. Callis, Two-photon-induced fluorescence, Annu. Rev. Phys. Chem, vol.48, p.271, 1997.

Y. Shen, The Principles of Nonlinear Optics, p.575, 1984.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The optical resonances in carbon nanotubes arise from excitons, Science, vol.308, p.838, 2005.

G. Cassabois, P. Valvin, and B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor, Nat. Photonics, vol.10, p.262, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01261847

E. B. Barros, R. B. Capaz, A. Jorio, G. G. Samsonidze, A. G. Souza-filho et al., Selection rules for one-and two-photon absorption by excitons in carbon nanotubes, Phys. Rev. B, vol.73, p.241406, 2006.

G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie et al., Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys, vol.90, p.21001, 2018.

F. Wu, F. Qu, and A. H. Macdonald, Exciton band structure of monolayer mos 2, Phys. Rev. B, vol.91, p.75310, 2015.

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides, Phys. Rev. B, vol.92, p.85413, 2015.

J. Xiao, Z. Ye, Y. Wang, H. Zhu, Y. Wang et al., Nonlinear optical selection rule based on valley-exciton locking in monolayer ws2, Light: Sci. Appl, vol.4, p.366, 2015.

T. Galvani, F. Paleari, H. P. Miranda, A. Molina-sánchez, L. Wirtz et al., Excitons in boron nitride single layer, Phys. Rev. B, vol.94, p.125303, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323899

M. M. Glazov, L. E. Golub, G. Wang, X. Marie, T. Amand et al., Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers, Phys. Rev. B, vol.95, p.35311, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02056459

P. Gong, H. Yu, Y. Wang, and W. Yao, Optical selection rules for excitonic rydberg series in the massive dirac cones of hexagonal two-dimensional materials, Phys. Rev. B, vol.95, p.125420, 2017.

C. Attaccalite and M. Grüning, Nonlinear optics from an ab initio approach by means of the dynamical berry phase: Application to second-and third-harmonic generation in semiconductors, Phys. Rev. B, vol.88, p.235113, 2013.

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B, vol.72, p.241402, 2005.

K. Watanabe and T. Taniguchi, Jahn-Teller effect on exciton states in hexagonal boron nitride single crystal, Phys. Rev. B, vol.79, p.193104, 2009.

P. Jaffrennou, J. Barjon, J. Lauret, A. Loiseau, F. Ducastelle et al., Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy, J. Appl. Phys, vol.102, p.116102, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00159913

L. Museur, G. Brasse, A. Pierret, S. Maine, B. Attal-tretout et al., Exciton optical transitions in a hexagonal boron nitride single crystal, Phys. Status Solidi RRL, vol.5, p.214, 2011.

A. Pierret, J. Loayza, B. Berini, A. Betz, B. Plaçais et al., Excitonic recombinations in hBN: From bulk to exfoliated layers, Phys. Rev. B, vol.89, p.35414, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00833437

L. Schue, B. Berini, A. C. Betz, B. Plaçais, F. Ducastelle et al., Dimensionality effects on the luminescence properties of hbn, Nanoscale, vol.8, p.6986, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310657

J. Li, X. K. Cao, T. B. Hoffman, J. H. Edgar, J. Y. Lin et al., Nature of exciton transitions in hexagonal boron nitride, Appl. Phys. Lett, vol.108, p.122101, 2016.

T. Q. Vuong, G. Cassabois, P. Valvin, V. Jacques, R. Cuscó et al., Overtones of interlayer shear modes in the phonon-assisted emission spectrum of hexagonal boron nitride, Phys. Rev. B, vol.95, p.45207, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01475800

S. Galambosi, L. Wirtz, J. A. Soininen, J. Serrano, A. Marini et al., Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride, Phys. Rev. B, vol.83, p.81413, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579067

G. Fugallo, M. Aramini, J. Koskelo, K. Watanabe, T. Taniguchi et al., Exciton energymomentum map of hexagonal boron nitride, Phys. Rev. B, vol.92, p.165122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02073978

R. Schuster, C. Habenicht, M. Ahmad, M. Knupfer, and B. Büchner, Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride, Phys. Rev. B, vol.97, p.41201, 2018.

L. Sponza, H. Amara, F. Ducastelle, A. Loiseau, and C. , Attaccalite, Exciton interference in hexagonal boron nitride, Phys. Rev. B, vol.97, p.75121, 2018.

B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Huge Excitonic Effects in Layered Hexagonal Boron Nitride, Phys. Rev. Lett, vol.96, p.26402, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00204993

L. Wirtz, A. Marini, and A. Rubio, Excitons in Boron Nitride Nanotubes: Dimensionality Effects, Phys. Rev. Lett, vol.96, p.126104, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00127833

L. Wirtz, A. Marini, M. Grüning, C. Attaccalite, G. Kresse et al., Huge Excitonic Effects in Layered Hexagonal Boron Nitride, Phys. Rev. Lett, vol.100, p.189701, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357330

L. Schue, L. Sponza, A. Plaud, H. Bensalah, K. Watanabe et al., Direct and indirect excitons with high binding energies in hbn

F. Paleari, T. Galvani, H. Amara, F. Ducastelle, A. Molinasánchez et al., Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization, 2D Mater, vol.5, p.45017, 2018.

B. Huang, X. K. Cao, H. X. Jiang, J. Y. Lin, and S. Wei, Origin of the significantly enhanced optical transitions in layered boron nitride, Phys. Rev. B, vol.86, p.155202, 2012.

G. Cappellini, G. Satta, M. Palummo, and G. Onida, Optical properties of bn in cubic and layered hexagonal phases, Phys. Rev. B, vol.64, p.35104, 2001.

X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B, vol.51, p.6868, 1995.

V. L. Solozhenko, G. Will, and F. Elf, Isothermal compression of hexagonal graphite-like boron nitride up to 12 gpa, Solid State Commun, vol.96, p.1, 1995.

J. Kang, L. Zhang, and S. Wei, A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors, J. Phys. Chem. Lett, vol.7, p.597, 2016.

E. Doni and G. P. Parravicini, Energy bands and optical properties of hexagonal boron nitride and graphite, Il Nuovo Cimento B, vol.64, p.117, 1965.

P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile et al., Exciton Band Structure in Two-Dimensional Materials, Phys. Rev. Lett, vol.116, p.66803, 2016.
DOI : 10.1103/physrevlett.116.066803

URL : https://hal.archives-ouvertes.fr/hal-01242427

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 2010.

Y. Toyozawa, Optical Processes in Solids, 2003.
DOI : 10.1017/cbo9780511615085

G. Grosso and G. Parravicini, Solid State Physics, 2014.

R. W. Boyd, Nonlinear Optics, 2008.

Q. Lin, O. J. Painter, and G. P. , Nonlinear optical phenomena in silicon waveguides: Modeling and applications, Opt. Express, vol.15, p.16604, 2007.
DOI : 10.1364/oe.15.016604

I. Souza, J. Íñiguez, and D. Vanderbilt, Dynamics of berryphase polarization in time-dependent electric fields, Phys. Rev. B, vol.69, p.85106, 2004.

L. F. Richardson, J. A. Gaunt, and V. , The deferred approach to the limit, Philos. Trans. R. Soc., A, vol.226, p.299, 1927.

C. Attaccalite, M. Grüning, and A. Marini, Real-time approach to the optical properties of solids and nanostructures: Timedependent bethe-salpeter equation, Phys. Rev. B, vol.84, p.245110, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00626220

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, p.1133, 1965.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

G. Strinati, Application of the Green's functions method to the study of the optical properties of semiconductors, Nuovo Cimento Rivista Serie, vol.11, p.1, 1988.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics, 1990.

G. D. Mahan, Theory of two-photon spectroscopy in solids, Phys. Rev, vol.170, p.825, 1968.

A. Shimizu, Two-photon absorption in quantum-well structures near half the direct band gap, Phys. Rev. B, vol.40, p.1403, 1989.

J. Koskelo, G. Fugallo, M. Hakala, M. Gatti, F. Sottile et al., Excitons in van der waals materials: From monolayer to bulk hexagonal boron nitride, Phys. Rev. B, vol.95, p.35125, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02073979

P. Giannozzi, QUANTUM ESPRESSO: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter, vol.21, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

, The approach is implemented in the LUMEN extension of the YAMBO many-body code, The source code is available from, vol.59

S. E. Koonin and D. C. Meredith, Computational Physics, 1990.

A. Marini, C. Hogan, M. Grüning, and D. Varsano, yambo: An ab initio tool for excited state calculations, Comput. Phys. Commun, vol.180, p.1392, 2009.

T. Cao, M. Wu, and S. G. Louie, Unifying Optical Selection Rules for Excitons in Two Dimensions: Band Topology and Winding Numbers, Phys. Rev. Lett, vol.120, p.87402, 2018.

X. Zhang, W. Shan, and D. Xiao, Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems, Phys. Rev. Lett, vol.120, p.77401, 2018.

C. Kim, L. Brown, M. W. Graham, R. Hovden, R. W. Havener et al., Stacking order dependent second harmonic generation and topological defects in h-bn bilayers, Nano Lett, vol.13, p.5660, 2013.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang et al., Probing symmetry properties of few-layer mos2 and h-bn by optical second-harmonic generation, Nano Lett, vol.13, p.3329, 2013.

M. Grüning and C. Attaccalite, Second harmonic generation in h-bn and mos 2 monolayers: Role of electron-hole interaction, Phys. Rev. B, vol.89, p.81102, 2014.

G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde et al., Giant Enhancement of the Optical Second-Harmonic Emission of wse 2 Monolayers by Laser Excitation at Exciton Resonances, Phys. Rev. Lett, vol.114, p.97403, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01968758

G. B. Ventura, D. J. Passos, J. M. Lopes, J. M. Santos, N. M. Lopes et al., Gauge covariances and nonlinear optical responses, Phys. Rev. B, vol.96, p.35431, 2017.