Inactivation of the arn operon and loss of aminoarabinose on lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of proteus vulgaris - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue International Journal of Antimicrobial Agents Année : 2018

Inactivation of the arn operon and loss of aminoarabinose on lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of proteus vulgaris

Zineb Leulmi
  • Fonction : Auteur
Claude Villard
Abiola Olumuyiwa Olaitan
  • Fonction : Auteur
Amar Telke
  • Fonction : Auteur

Résumé

Colistin has become a last-line antibiotic for the treatment of multidrug-resistant bacterial infections; however, resistance to colistin has emerged in recent years. Some bacteria, such as Proteus and Serratia spp., are intrinsically resistant to colistin although the exact mechanism of resistance is unknown. Here we identified the molecular support for intrinsic colistin resistance in Proteus spp. by comparative genomic, transcriptomic and proteomic analyses of colistin-susceptible (CSUR P1868_S) and colistin-resistant (CSUR P1867_R) strains of an atypical Proteus vulgaris. A significant difference in outer membrane glycoside structures in both strains that was corroborated by MALDI-TOF/MS analysis was found, which showed an absence of 4-amino-4-deoxy-l-arabinose (L-Ara4N) in the outer membrane lipid A moiety of the susceptible strain. Comparative genomic analysis with other resistant strains of P. vulgaris available in a local database found a mutation in the arnBCADTEF operon of the susceptible strain. Transcriptomic analysis of genes belonging to the arnBCADTEF operon showed a significant decrease in mRNA expression level of these genes in the susceptible strain, supporting addition of L-Ara4N in the outer membrane lipid A moiety as an explanation for colistin resistance. Insertion of the arnD gene that was suggested to be altered in the susceptible strain by in silico analysis led to a 16-fold increase of colistin MIC in the susceptible strain, confirming its role in colistin resistance in this species. Here we show that constitutive activation of the arn operon and addition of L-Ara4N is the main molecular mechanism of colistin resistance in P. vulgaris.
Fichier non déposé

Dates et versions

hal-01756938 , version 1 (03-04-2018)

Identifiants

Citer

Sophie Baron, Zineb Leulmi, Claude Villard, Abiola Olumuyiwa Olaitan, Amar Telke, et al.. Inactivation of the arn operon and loss of aminoarabinose on lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of proteus vulgaris. International Journal of Antimicrobial Agents, 2018, 51 (3), pp.450 - 457. ⟨10.1016/j.ijantimicag.2017.11.017⟩. ⟨hal-01756938⟩
85 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More