V. Frisch and K. , The Dance Language and Orientation of Bees, 1967.
DOI : 10.4159/harvard.9780674418776

R. Menzel and M. Giurfa, Cognitive architecture of a mini-brain: the honeybee, Trends in Cognitive Sciences, vol.5, issue.2, pp.62-71, 2001.
DOI : 10.1016/S1364-6613(00)01601-6

D. Haddad, F. Schaupp, R. Brandt, G. Manz, R. Menzel et al., Imaging of the honeybee brain, Journal of Insect Science, vol.4, issue.1, p.7, 2004.

R. Seidl and W. Kaiser, Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees, Journal of Comparative Physiology ? A, vol.104, issue.1, pp.17-26, 1981.
DOI : 10.1007/BF00606065

M. Srinivasan, S. Zhang, M. Altwein, and J. Tautz, Honeybee navigation, Current Biology, vol.13, issue.23, pp.851-853, 2000.
DOI : 10.1016/j.cub.2003.11.005

URL : https://doi.org/10.1016/j.cub.2003.11.005

M. Srinivasan, Going with the flow: a brief history of the study of the honeybee???s navigational ???odometer???, Journal of Comparative Physiology A, vol.164, issue.6, pp.563-573, 2014.
DOI : 10.1126/science.164.3875.84

F. Kv, Gelöste und ungelöste Rätsel der Bienensprache, Die Naturwissenschaften, vol.35, issue.1, pp.12-23, 1948.

O. Von-helversen and W. Edrich, The spectral sensitivity of polarized light orientation in the honeybee, Journal of comparative physiology, vol.38, issue.1, pp.33-47, 1974.
DOI : 10.1515/znb-1972-0524

Y. Ogawa, W. Ribi, J. Zeil, and J. Hemmi, Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors, The Journal of Experimental Biology, vol.220, issue.9, 2017.
DOI : 10.1242/jeb.156109

T. Landgraf, M. Oertel, D. Rhiel, and R. Rojas, A biomimetic honeybee robot for the analysis of the honeybee dance communication system, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3097-3102
DOI : 10.1109/IROS.2010.5650930

F. Expert and F. Ruffier, Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers, Bioinspiration & Biomimetics, vol.10, issue.2, p.26003, 2015.
DOI : 10.1088/1748-3182/10/2/026003

B. Webb and A. Wystrach, Neural mechanisms of insect navigation, Current Opinion in Insect Science, vol.15, pp.27-39, 2016.
DOI : 10.1016/j.cois.2016.02.011

M. Franz and H. Mallot, Biomimetic robot navigation, Robotics and Autonomous Systems, vol.30, issue.1-2, pp.133-153, 2000.
DOI : 10.1016/S0921-8890(99)00069-X

URL : http://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/integrated1/franz_navigation.pdf

B. Webb, Can robots make good models of biological behaviour?, Behavioral and Brain Sciences, vol.24, issue.06, pp.1033-1050, 2001.
DOI : 10.1017/S0140525X01000127

B. Webb, Validating biorobotic models, Journal of Neural Engineering, vol.3, issue.3, p.25, 2006.
DOI : 10.1088/1741-2560/3/3/R01

M. Srinivasan, Visual control of navigation in insects and its relevance for robotics, Current Opinion in Neurobiology, vol.21, issue.4, pp.535-543, 2011.
DOI : 10.1016/j.conb.2011.05.020

D. Floreano, A. Ijspeert, and S. Schaal, Robotics and Neuroscience, Current Biology, vol.24, issue.18, pp.910-920, 2014.
DOI : 10.1016/j.cub.2014.07.058

A. Ijspeert, Biorobotics: Using robots to emulate and investigate agile locomotion, Science, vol.20, issue.23, pp.196-203, 2014.
DOI : 10.1088/1748-3182/9/1/011001

URL : https://infoscience.epfl.ch/record/202118/files/Science-2014-Biorobotics-Ijspeert-Preprint.pdf

N. Franceschini, Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again, Proceedings of the IEEE, vol.102, issue.5, pp.751-781
DOI : 10.1109/JPROC.2014.2312916

T. Raharijaona, L. Kerhuel, J. Serres, F. Roubieu, F. Expert et al., INSECT INSPIRED VISUAL MOTION SENSING AND FLYING ROBOTS, Handbook of Biomimetics and Bioinspiration: 2 Electromechanical Systems, pp.565-611, 2014.
DOI : 10.1142/9789814354936_0022

N. Franceschini, J. Pichon, and C. Blanes, From Insect Vision to Robot Vision [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.337, issue.1281, pp.283-294, 1992.
DOI : 10.1098/rstb.1992.0106

N. Franceschini, F. Ruffier, and J. Serres, A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities, Current Biology, vol.17, issue.4, pp.329-335, 2007.
DOI : 10.1016/j.cub.2006.12.032

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, A mobile robot employing insect strategies for navigation, Robotics and Autonomous Systems, vol.30, issue.1-2, pp.39-64, 2000.
DOI : 10.1016/S0921-8890(99)00064-0

A. Horchler, R. Reeve, B. Webb, and R. Quinn, Robot phonotaxis in the wild: a biologically inspired approach to outdoor sound localization, Advanced Robotics, vol.18, issue.8, pp.801-816, 2004.
DOI : 10.1163/1568553041738095

F. Roubieu, J. Serres, F. Colonnier, N. Franceschini, S. Viollet et al., A biomimetic vision-based hovercraft accounts for bees??? complex behaviour in various corridors, Bioinspiration & Biomimetics, vol.9, issue.3, p.36003, 2014.
DOI : 10.1088/1748-3182/9/3/036003

URL : https://hal.archives-ouvertes.fr/hal-01446797

P. Duhamel, N. Pérez-arancibia, G. Barrows, and R. Wood, Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor, 2012 IEEE International Conference on Robotics and Automation, pp.4228-4235
DOI : 10.1109/ICRA.2012.6225313

A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, Towards a swarm of agile micro quadrotors, Autonomous Robots, vol.52, issue.5, pp.287-300, 2013.
DOI : 10.1109/TAC.2007.895948

K. Ma, P. Chirarattananon, S. Fuller, and R. Wood, Controlled Flight of a Biologically Inspired, Insect-Scale Robot, Science, vol.41, issue.24, pp.603-607, 2013.
DOI : 10.1109/9.486654

O. Dunkley, J. Engel, J. Sturm, and D. Cremers, Visual-inertial navigation for a cameraequipped 25g nano-quadrotor. In: IROS2014 aerial open source robotics workshop, 2014.

R. Moore, K. Dantu, G. Barrows, and R. Nagpal, Autonomous MAV guidance with a lightweight omnidirectional vision sensor, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.3856-3861, 2014.
DOI : 10.1109/ICRA.2014.6907418

D. Floreano and R. Wood, Science, technology and the future of small autonomous drones, Nature, vol.107, issue.7553, pp.460-466, 2015.
DOI : 10.1016/j.robot.2009.02.001

J. Gibson, The Perception of the Visual World, The American Journal of Psychology, vol.64, issue.3, 1950.
DOI : 10.2307/1419017

T. Whiteside and G. Samuel, Blur Zone, Nature, vol.7, issue.5227, pp.94-95, 1970.
DOI : 10.1038/225094a0

K. Nakayama and J. Loomis, Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis, Perception, vol.10, issue.1, pp.63-80, 1974.
DOI : 10.1038/225094a0

J. Koenderink and A. Van-doorn, Facts on optic flow, Biological Cybernetics, vol.203, issue.4, pp.247-254, 1987.
DOI : 10.1007/BF00365219

H. Krapp and R. Hengstenberg, Estimation of self-motion by optic flow processing in single visual interneurons, Nature, vol.384, issue.6608, pp.463-466, 1996.
DOI : 10.1038/384463a0

S. Viollet and J. Zeil, Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera), Journal of Experimental Biology, vol.216, issue.7, pp.1280-1291, 2013.
DOI : 10.1242/jeb.074773

URL : https://hal.archives-ouvertes.fr/hal-01446800

G. Taylor and H. Krapp, Sensory systems and flight stability: What do insects measure and why? Advances in Insect Physiology, pp.231-316, 2007.

M. Srinivasan, M. Lehrer, W. Kirchner, and S. Zhang, Abstract, Visual Neuroscience, vol.36, issue.05, pp.519-535, 1991.
DOI : 10.1017/S095252380000033X

E. Baird, M. Srinivasan, S. Zhang, and A. Cowling, Visual control of flight speed in honeybees, Journal of Experimental Biology, vol.208, issue.20, pp.3895-3905, 2005.
DOI : 10.1242/jeb.01818

M. Ibbotson, Evidence for velocity-tuned motion-sensitive descending neurons in the honeybee, Proceedings of the Royal Society B: Biological Sciences, vol.268, issue.1482, pp.2195-2201, 1482.
DOI : 10.1098/rspb.2001.1770

S. Van-der-zwaan and J. Santos-victor, An insect inspired visual sensor for the autonomous navigation of a mobile robot, Proc of the Seventh International Sysposium on Intelligent Robotic Systems (SIRS), 1999.

S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. Mclain et al., Obstacle and terrain avoidance for miniature aerial vehicles Advances in Unmanned Aerial Vehicles, pp.213-244, 2007.

A. Beyeler, J. Zufferey, and D. Floreano, Vision-based control of near-obstacle flight, Autonomous Robots, vol.21, issue.14, pp.201-219, 2009.
DOI : 10.1201/9781439808115

D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications, 2013 IEEE International Conference on Robotics and Automation, pp.1736-1741
DOI : 10.1109/ICRA.2013.6630805

D. Burkhardt and M. Gewecke, Mechanoreception in Arthropoda: The chain from stimulus to behavioral pattern In: Cold Spring Harbor symposia on quantitative biology, pp.601-614, 1965.

M. Srinivasan and . In, How Insects Infer Range from Visual Motion. Miles FA, 1993.

G. Portelli, J. Serres, F. Ruffier, and N. Franceschini, Modelling honeybee visual guidance in a 3-D environment, Journal of Physiology-Paris, vol.104, issue.1-2, pp.27-39, 2010.
DOI : 10.1016/j.jphysparis.2009.11.011

G. Portelli, F. Ruffier, F. Roubieu, and N. Franceschini, Honeybees' Speed Depends on Dorsal as Well as Lateral, Ventral and Frontal Optic Flows, PLoS ONE, vol.3, issue.11, p.19486, 2011.
DOI : 10.1371/journal.pone.0019486.s002

URL : https://hal.archives-ouvertes.fr/hal-00743523

D. Carroll, N. Bidwell, S. Laughlin, and E. Warrant, Insect motion detectors matched to visual ecology, Nature, vol.382, issue.6586, p.63, 1996.
DOI : 10.1038/382063a0

N. Franceschini, A. Riehle, L. Nestour, and A. , Directionally selective motion detection by insect neurons. Facets of Vision, pp.360-390, 1989.
DOI : 10.1007/978-3-642-74082-4_17

M. Land, VISUAL ACUITY IN INSECTS, Annual Review of Entomology, vol.42, issue.1, pp.147-177, 1997.
DOI : 10.1146/annurev.ento.42.1.147

S. Rossel, Regional differences in photoreceptor performance in the eye of the praying mantis, Journal of Comparative Physiology ? A, vol.57, issue.2, pp.95-112, 1979.
DOI : 10.1016/B978-1-4832-2739-9.50011-9

M. Land, Optics and Vision in Invertebrates, 1981.
DOI : 10.1007/978-3-642-66907-1_4

K. Götz, Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila, Kybernetik, vol.53, issue.2, pp.77-92, 1964.
DOI : 10.1007/BF00288561

G. Horridge, The Compound Eye of Insects, Scientific American, vol.237, issue.1, pp.108-120, 1977.
DOI : 10.1038/scientificamerican0777-108

S. Laughlin and M. Weckström, Fast and slow photoreceptors ? a comparative study of the functional diversity of coding and conductances in the Diptera, Journal of Comparative Physiology A, vol.64, issue.5, pp.593-609, 1993.
DOI : 10.1113/jphysiol.1991.sp018729

D. Floreano, R. Pericet-camara, S. Viollet, F. Ruffier, A. Brückner et al., Miniature curved artificial compound eyes, Proceedings of the National Academy of Sciences, vol.110, issue.23, pp.9267-9272, 2013.
DOI : 10.1126/science.1182228

URL : https://hal.archives-ouvertes.fr/hal-00835031

Y. Song, Y. Xie, V. Malyarchuk, X. J. Jung, I. Choi et al., Digital cameras with designs inspired by the arthropod eye, Nature, vol.67, issue.7447, pp.95-99, 2013.
DOI : 10.1007/BF00298120

C. Blanes, Appareil visuel élémentaire pour la navigation à vue d'un robot mobile autonome, Neurosciences), 1986.

C. Blanes, Guidage visuel d'un robot mobile autonome d'inspiration bionique, 1991.

N. Franceschini, Early processing of colour and motion in a mosaic visual system, Neuroscience Research Supplements, vol.2, pp.17-49, 1985.
DOI : 10.1016/0921-8696(85)90005-2

F. Roubieu, F. Expert, M. Boyron, B. Fuschlock, S. Viollet et al., A novel 1-gram insect based device measuring visual motion along 5 optical directions, 2011 IEEE SENSORS Proceedings, pp.687-690, 2011.
DOI : 10.1109/ICSENS.2011.6127157

URL : https://hal.archives-ouvertes.fr/hal-00716606

F. Ruffier, S. Viollet, S. Amic, and N. Franceschini, Bio-inspired optical flow circuits for the visual guidance of micro air vehicles, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., p.846
DOI : 10.1109/ISCAS.2003.1205152

S. Mafrica, S. Godiot, M. Menouni, M. Boyron, F. Expert et al., A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light, Optics Express, vol.23, issue.5, pp.5614-5635, 2015.
DOI : 10.1364/OE.23.005614

URL : https://hal.archives-ouvertes.fr/hal-01099946

R. Normann and I. Perlman, The effects of background illumination on the photoresponses of red and green cones., The Journal of Physiology, vol.286, issue.1, p.491, 1979.
DOI : 10.1113/jphysiol.1979.sp012633

T. Matic and S. Laughlin, Changes in the intensity-response function of an insect's photoreceptors due to light adaptation, Journal of Comparative Physiology ??? A, vol.64, issue.2, pp.169-177, 1981.
DOI : 10.1113/jphysiol.1966.sp008003

S. Laughlin, The roles of parallel channels in early visual processing by the arthropod compound eye. Photoreception and Vision in Invertebrates, pp.457-481, 1984.

S. Laughlin, Coding efficiency and design in visual processing. Facets of Vision, pp.213-234, 1989.

M. Juusola and A. French, Visual Acuity for Moving Objects in First- and Second-Order Neurons of the Fly Compound Eye, Journal of Neurophysiology, vol.6, issue.3, pp.1487-1495, 1997.
DOI : 10.1085/jgp.76.5.517

A. Riehle and N. Franceschini, Motion detection in flies: Parametric control over ON-OFF pathways, Experimental Brain Research, vol.54, issue.2, pp.390-394, 1984.
DOI : 10.1007/BF00236243

R. Harris, O. Carroll, and D. , Afterimages in fly motion vision, Vision Research, vol.42, issue.14, pp.1701-1714, 2002.
DOI : 10.1016/S0042-6989(02)00100-1

B. Hassenstein and W. Reichardt, Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus, Zeitschrift für Naturforschung B, vol.11, pp.9-10513, 1956.
DOI : 10.1515/znb-1956-9-1004

W. Reichardt, Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sensory Communication, pp.303-317, 1961.

J. Kramer, R. Sarpeshkar, and C. Koch, An analog VLSI velocity sensor, Proceedings of ISCAS'95, International Symposium on Circuits and Systems, pp.413-416, 1995.
DOI : 10.1109/ISCAS.1995.521538

URL : http://www.pcmp.caltech.edu/anaprose/rahul/motion/iscas95.pdf

R. Moeckel and S. Liu, Motion Detection Circuits for a Time-To-Travel Algorithm, 2007 IEEE International Symposium on Circuits and Systems, pp.3079-3082, 2007.
DOI : 10.1109/ISCAS.2007.378059

F. Aubépart and N. Franceschini, Bio-inspired optic flow sensors based on FPGA: Application to micro-air-vehicles. Microprocessors and Microsystems, pp.408-419, 2007.

M. Pudas, S. Viollet, F. Ruffier, A. Kruusing, S. Amic et al., A miniature bioinspired optic flow sensor based on low temperature cofired ceramics (LTCC) technology . Sensors and Actuators A: Physical, pp.88-95, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01446807

F. Expert, S. Viollet, and F. Ruffier, Outdoor field performances of insect-based visual motion sensors, Journal of Field Robotics, vol.22, issue.1, pp.529-541, 2011.
DOI : 10.1109/TRO.2005.858857

URL : https://hal.archives-ouvertes.fr/hal-00712699

G. Sabiron, P. Chavent, T. Raharijaona, P. Fabiani, and F. Ruffier, Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields, 2013 IEEE International Conference on Robotics and Automation, pp.1742-1749
DOI : 10.1109/ICRA.2013.6630806

URL : https://hal.archives-ouvertes.fr/hal-00820264

F. Expert, F. Roubieu, and F. Ruffier, Interpolation based “time of travel” scheme in a Visual Motion Sensor using a small 2D retina, 2012 IEEE Sensors, pp.1-4, 2012.
DOI : 10.1109/ICSENS.2012.6411364

S. Mafrica, A. Servel, and F. Ruffier, Minimalistic optic flow sensors applied to indoor and outdoor visual guidance and odometry on a car-like robot, Bioinspiration & Biomimetics, vol.11, issue.6, p.66007, 2016.
DOI : 10.1088/1748-3190/11/6/066007

URL : https://hal.archives-ouvertes.fr/hal-01454792

T. Delbruck and C. Mead, Adaptive photoreceptor with wide dynamic range. Circuits and Systems, ISCAS'94. IEEE International Symposium on, pp.339-342, 1994.
DOI : 10.1109/iscas.1994.409266

URL : https://authors.library.caltech.edu/53623/1/00409266.pdf

P. Xu, J. Humbert, and P. Abshire, Analog VLSI Implementation of Wide-field Integration Methods, Journal of Intelligent & Robotic Systems, vol.4, issue.1, pp.3-4465, 2011.
DOI : 10.1109/TITS.2002.808418

H. Chao, Y. Gu, and M. Napolitano, A Survey of Optical Flow Techniques for Robotics Navigation Applications, Journal of Intelligent & Robotic Systems, vol.2, issue.2, pp.1-4361, 2014.
DOI : 10.1260/1756-8293.2.2.107

D. Coombs and K. Roberts, Bee-bot: Using peripheral optical flow to avoid obstacles Intelligent robots and computer vision XI, SPIE, pp.714-721, 1992.

J. Santos-victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo in autonomous navigation: From bees to robots, International Journal of Computer Vision, vol.60, issue.6162, pp.159-177, 1995.
DOI : 10.1007/BF01418981

K. Weber, S. Venkatesh, and M. Srinivasan, Insect inspired behaviors for the autonomous robots, From Living Eyes to Seeing Machines. 11, pp.226-248, 1997.

M. Srinivasan, J. Chahl, K. Weber, S. Venkatesh, M. Nagle et al., Robot navigation inspired by principles of insect vision, Robotics and Autonomous Systems, vol.26, issue.2-3, pp.203-216, 1999.
DOI : 10.1016/S0921-8890(98)00069-4

G. Baratoff, C. Toepfer, and H. Neumann, Combined space-variant maps for optical-flow-based navigation, Biological Cybernetics, vol.83, issue.3, pp.199-209, 2000.
DOI : 10.1007/s004220000164

A. Argyros, D. Tsakiris, and C. Groyer, Biomimetic centering behavior for mobile robots with panoramic sensors. IEEE Robotics and Automation Magazine, Special issue on Mobile robots with panoramic sensors, pp.21-30, 2004.

J. Humbert, A. Hyslop, and M. Chinn, Experimental validation of wide-field integration methods for autonomous navigation, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2144-2149, 2007.
DOI : 10.1109/IROS.2007.4399488

J. Humbert and A. Hyslop, Bioinspired visuomotor convergence. Robotics, IEEE Transactions on, vol.26, issue.1, pp.121-130, 2010.
DOI : 10.1109/tro.2009.2033330

F. Roubieu, J. Serres, N. Franceschini, F. Ruffier, and S. Viollet, A fully-autonomous hovercraft inspired by bees: Wall following and speed control in straight and tapered corridors, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.1311-1318
DOI : 10.1109/ROBIO.2012.6491150

URL : https://hal.archives-ouvertes.fr/hal-00743129

F. Ruffier and N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance, Robotics and Autonomous Systems, vol.50, issue.4, pp.177-194, 2005.
DOI : 10.1016/j.robot.2004.09.016

J. Serres, D. Dray, F. Ruffier, and N. Franceschini, A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance, Autonomous Robots, vol.312, issue.4, pp.103-122, 2008.
DOI : 10.1007/978-3-642-74082-4_17

URL : https://hal.archives-ouvertes.fr/hal-01758721

M. Srinivasan, S. Zhang, M. Lehrer, and T. Collett, Honeybee navigation en route to the goal: Visual flight control and odometry, The Journal of Experimental Biology, vol.199, issue.1, pp.237-244, 1996.

J. Serres, G. M. Rf, and N. Franceschini, A bee in the corridor: centering and wall-following, Naturwissenschaften, vol.8, issue.4, pp.1181-1187, 2008.
DOI : 10.1007/978-1-4613-2743-1_16

J. Serres and F. Ruffier, Optic Flow-Based Robotics, pp.1-14, 2016.
DOI : 10.1364/OE.23.005614

J. Humbert, Bio-inspired visuomotor convergence in navigation and flight control systems . California Institute of Technology, 2005.

J. Humbert, R. Murray, and M. Dickinson, SENSORIMOTOR CONVERGENCE IN VISUAL NAVIGATION AND FLIGHT CONTROL SYSTEMS, Proceedings of the 16th IFAC World Congress, 2005.
DOI : 10.3182/20050703-6-CZ-1902.02003

J. Humbert, R. Murray, and M. Dickinson, A Control-Oriented Analysis of Bio-inspired Visuomotor Convergence, Proceedings of the 44th IEEE Conference on Decision and Control, pp.245-250
DOI : 10.1109/CDC.2005.1582162

J. Humbert, R. Murray, and M. Dickinson, Pitch-Altitude Control and Terrain Following Based on Bio-Inspired Visuomotor Convergence, AIAA Guidance, Navigation, and Control Conference and Exhibit, pp.2005-6280, 2005.
DOI : 10.1007/BF00365219

J. Conroy, G. Gremillion, B. Ranganathan, and J. Humbert, Implementation of wide-field integration of optic flow for??autonomous quadrotor navigation, Autonomous Robots, vol.22, issue.4, pp.189-198, 2009.
DOI : 10.1007/s10514-009-9140-0

A. Hyslop, H. Krapp, and J. Humbert, Control theoretic interpretation of directional motion preferences in optic flow processing interneurons, Biological Cybernetics, vol.22, issue.2, pp.353-364, 2010.
DOI : 10.1007/978-3-642-66179-2

K. Hausen, Motion sensitive interneurons in the optomotor system of the fly, Biological Cybernetics, vol.124, issue.4, pp.143-156, 1982.
DOI : 10.1007/978-3-642-66432-8_16

H. Krapp, B. Hengstenberg, and R. Hengstenberg, Dendritic Structure and Receptive-Field Organization of Optic Flow Processing Interneurons in the Fly, Journal of Neurophysiology, vol.69, issue.4, pp.1902-1917, 1998.
DOI : 10.1017/S0952523800000614

A. Borst and J. Haag, Neural networks in the cockpit of the fly, Journal of Comparative Physiology A, vol.188, issue.6, pp.419-437, 2002.

J. Keshavan, G. Gremillion, H. Escobar-alvarez, and H. J. , analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments, Bioinspiration & Biomimetics, vol.9, issue.2, p.25011, 2014.
DOI : 10.1088/1748-3182/9/2/025011

J. Keshavan, G. Gremillion, H. Alvarez-escobar, and J. Humbert, Autonomous Vision-Based Navigation of a Quadrotor in Corridor-Like Environments, International Journal of Micro Air Vehicles, vol.14, issue.2, pp.111-124, 2015.
DOI : 10.1016/0167-6911(90)90050-5

A. Duchon and W. Warren, Robot navigation from a Gibsonian viewpoint, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp.2272-2277, 1994.
DOI : 10.1109/ICSMC.1994.400203

D. Lee, A Theory of Visual Control of Braking Based on Information about Time-to-Collision, Perception, vol.59, issue.3, pp.437-459, 1976.
DOI : 10.1007/BF01755547

R. Nelson and J. Aloimonos, Using flow field divergence for obstacle avoidance in visual navigation, Science Applications International Corp, Proceedings: Image Understanding Workshop, 1988.

N. Ancona and T. Poggio, Optical flow from 1D correlation: Application to a simple time-to-crash detector, 1993 (4th) International Conference on Computer Vision, pp.209-214, 1993.
DOI : 10.1109/ICCV.1993.378218

L. Muratet, S. Doncieux, Y. Briere, and J. Meyer, A contribution to vision-based autonomous helicopter flight in urban environments, Robotics and Autonomous Systems, vol.50, issue.4, pp.195-209, 2005.
DOI : 10.1016/j.robot.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-01185695

S. Badia, U. Bernardet, and P. Verschure, Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector, PLoS Computational Biology, vol.44, issue.46, p.1000701, 2010.
DOI : 10.1371/journal.pcbi.1000701.s002

J. Zufferey and D. Floreano, Fly-inspired visual steering of an ultralight indoor aircraft, IEEE Transactions on Robotics, vol.22, issue.1, pp.137-146, 2006.
DOI : 10.1109/TRO.2005.858857

M. Reiser and M. Dickinson, A test bed for insect-inspired robotic control, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.361, issue.1811, pp.2267-2285, 1811.
DOI : 10.1098/rsta.2003.1259

A. Beyeler, J. Zufferey, and D. Floreano, 3D Vision-based Navigation for Indoor Microflyers, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.1336-1341, 2007.
DOI : 10.1109/ROBOT.2007.363170

URL : http://infoscience.epfl.ch/record/89719/files/icra07_enlil_final.pdf

G. Barrows, C. Neely, and K. Miller, Optic flow sensors for MAV navigation In: Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, pp.557-574, 2001.

W. Green, P. Oh, and G. Barrows, Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.2347-2352, 2004.
DOI : 10.1109/ROBOT.2004.1307412

J. Lindemann, H. Weiss, R. Möller, and M. Egelhaaf, Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly, Biological Cybernetics, vol.22, issue.3, pp.213-227, 2008.
DOI : 10.1007/BF00192653

M. Rezaei and F. Saghafi, Optical flow-based obstacle avoidance of a fixed-wing MAV. Aircraft Engineering and Aerospace Technology, pp.85-93, 2011.

J. Serres and F. Ruffier, Biomimetic Autopilot Based on Minimalistic Motion Vision for Navigating along Corridors Comprising U-shaped and S-shaped Turns, Journal of Bionic Engineering, vol.110, issue.1, pp.47-60, 2015.
DOI : 10.1073/pnas.1219068110

URL : https://hal.archives-ouvertes.fr/hal-01108274

J. Chahl, M. Srinivasan, and S. Zhang, Landing Strategies in Honeybees and Applications to Uninhabited Airborne Vehicles, The International Journal of Robotics Research, vol.23, issue.2, pp.101-110, 2004.
DOI : 10.1038/297147a0

M. Garratt and J. Chahl, Vision-based terrain following for an unmanned rotorcraft, Journal of Field Robotics, vol.84, issue.4-5, pp.4-5284, 2008.
DOI : 10.1007/BF00610992

B. Herissé, T. Hamel, R. Mahony, and F. Russotto, Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow, IEEE Transactions on Robotics, vol.28, issue.1, pp.77-89, 2012.
DOI : 10.1109/TRO.2011.2163435

W. Green and P. Oh, Optic-Flow-Based Collision Avoidance, IEEE Robotics & Automation Magazine, vol.15, issue.1, 2008.
DOI : 10.1109/MRA.2008.919023

T. Nelson and J. Peterson, NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity, 1982.

R. Goulard, J. Vercher, and S. Viollet, To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?, The Journal of Experimental Biology, vol.219, issue.16, pp.2497-2503, 2016.
DOI : 10.1242/jeb.141150

URL : https://hal.archives-ouvertes.fr/hal-01436016

C. Sabo, A. Cope, K. Gurny, E. Vasilaki, and J. Marshall, Bio-Inspired Visual Navigation for a Quadcopter using Optic Flow, AIAA Infotech @ Aerospace, p.404, 2016.
DOI : 10.2307/3213263

M. Garratt and A. Cheung, Obstacle Avoidance in Cluttered Environments Using Optic Flow, Australian Conference on Robotics and Automation, 2009.

Y. Ham, K. Han, J. Lin, and M. Golparvar-fard, Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works, Visualization in Engineering, vol.102, issue.2, p.1, 2016.
DOI : 10.1109/JPROC.2013.2294314

O. Küng, C. Strecha, P. Fua, D. Gurdan, M. Achtelik et al., Simplified building models extraction from ultra-light UAV imagery. ISPRS-international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, vol.3822, pp.217-222, 2011.

D. Holz, M. Nieuwenhuisen, D. Droeschel, M. Schreiber, and S. Behnke, TOWARDS MULTIMODAL OMNIDIRECTIONAL OBSTACLE DETECTION FOR AUTONOMOUS UNMANNED AERIAL VEHICLES, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.1, issue.2, p.2, 2013.
DOI : 10.5194/isprsarchives-XL-1-W2-201-2013

URL : http://www.ais.uni-bonn.de/papers/holz_isprs_uav_obstacle_detection.pdf

P. Gohl, D. Honegger, S. Omari, M. Achtelik, M. Pollefeys et al., Omnidirectional visual obstacle detection using embedded FPGA, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.3938-3943, 2015.
DOI : 10.1109/IROS.2015.7353931

T. Louiset, A. Pamart, E. Gattet, T. Raharijaona, D. Luca et al., A Shape-Adjusted Tridimensional Reconstruction of Cultural Heritage Artifacts Using a Miniature Quadrotor, Remote Sensing, vol.8, issue.10, p.858, 2016.
DOI : 10.3390/s150716484

URL : https://hal.archives-ouvertes.fr/hal-01454793