W. Lubitz, H. Ogata, O. Rüdiger, and E. Reijerse, Hydrogenases, Chemical Reviews, vol.114, issue.8, pp.4081-4148, 2014.
DOI : 10.1021/cr4005814

URL : https://hal.archives-ouvertes.fr/hal-01069156

J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard et al., [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.6, pp.1350-1369, 2015.
DOI : 10.1016/j.bbamcr.2014.11.021

URL : https://doi.org/10.1016/j.bbamcr.2014.11.021

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. Seefeldt, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution, Science, vol.282, issue.5395, pp.1853-1858, 1998.
DOI : 10.1126/science.282.5395.1853

Y. Nicolet, C. Piras, P. Legrand, and C. E. Hatchikian, Fontecilla-Camps, J. C. Struct. Lond. Engl, vol.7, issue.4, pp.13-23, 19931999.

A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, A. Adamska-venkatesh et al., 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge, Physical Chemistry Chemical Physics, vol.123, issue.16, p.6592, 2009.
DOI : 10.1007/s002140050244

V. Artero, G. Berggren, M. Atta, G. Caserta, S. Roy et al., From Enzyme Maturation to Synthetic Chemistry: The Case of Hydrogenases, Accounts of Chemical Research, vol.48, issue.8, pp.2380-2387, 2015.
DOI : 10.1021/acs.accounts.5b00157

URL : https://hal.archives-ouvertes.fr/hal-01206573

K. D. Swanson, M. W. Ratzloff, D. W. Mulder, J. H. Artz, S. Ghose et al., [FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster, Journal of the American Chemical Society, vol.137, issue.5, pp.1809-1816, 2015.
DOI : 10.1021/ja510169s

J. L. Stanley, T. B. Rauchfuss, and S. R. Wilson, Studies on the Condensation Pathway to and Properties of Diiron Azadithiolate Carbonyls, Organometallics, vol.26, issue.8, pp.1907-1911, 2007.
DOI : 10.1021/om0611150

URL : http://europepmc.org/articles/pmc2441914?pdf=render

L. Girbal, G. Von-abendroth, M. Winkler, P. M. Benton, I. Meynial-salles et al., Homologous and Heterologous Overexpression in Clostridium acetobutylicum and Characterization of Purified Clostridial and Algal Fe-Only Hydrogenases with High Specific Activities, Applied and Environmental Microbiology, vol.71, issue.5, pp.2777-2781, 2005.
DOI : 10.1128/AEM.71.5.2777-2781.2005

URL : http://aem.asm.org/content/71/5/2777.full.pdf

M. K. Akhtar and P. R. Jones, Deletion of iscR stimulates recombinant clostridial Fe???Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3), Applied Microbiology and Biotechnology, vol.70, issue.5, pp.853-862, 2008.
DOI : 10.1093/oxfordjournals.jbchem.a022409

M. Atta and J. Meyer, Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1476, issue.2, pp.368-371, 2000.
DOI : 10.1016/S0167-4838(99)00245-9

W. W. Fish, [27] Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples, Methods Enzymol, vol.158, issue.28, pp.357-364, 1988.
DOI : 10.1016/0076-6879(88)58067-9

H. Beinert, Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins, Analytical Biochemistry, vol.131, issue.2, pp.373-378, 1983.
DOI : 10.1016/0003-2697(83)90186-0

E. Reijerse, F. Lendzian, R. Isaacson, and W. Lubitz, A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation, Journal of Magnetic Resonance, vol.214, pp.237-243, 2012.
DOI : 10.1016/j.jmr.2011.11.011

J. R. Pilbrow, Principles of computer simulation of EPR spectra, Applied Magnetic Resonance, vol.96, issue.1-3, pp.45-53, 1996.
DOI : 10.1007/BF03163098

V. Fourmond, T. Lautier, C. Baffert, F. Leroux, P. Liebgott et al., Correcting for Electrocatalyst Desorption and Inactivation in Chronoamperometry Experiments, Analytical Chemistry, vol.81, issue.8, pp.2962-2968, 2009.
DOI : 10.1021/ac8025702

P. Ceccaldi, K. Schuchmann, V. Müller, and S. Elliott, reductase: the first completely CO tolerant FeFe-hydrogenase, Energy & Environmental Science, vol.137, issue.2, pp.503-508, 2017.
DOI : 10.1021/jacs.5b01194

URL : http://pubs.rsc.org/en/content/articlepdf/2017/ee/c6ee02494g

P. Rodríguez-maciá, E. Reijerse, W. Lubitz, J. A. Birrell, and O. Rüdiger, Spectroscopic Evidence of Reversible Disassembly of the [FeFe] Hydrogenase Active Site, The Journal of Physical Chemistry Letters, vol.8, issue.16, pp.3834-3839, 2017.
DOI : 10.1021/acs.jpclett.7b01608

B. Frangioni, P. Arnoux, M. Sabaty, D. Pignol, P. Bertrand et al., Respiratory Nitrate Reductase, the Kinetics of Substrate Binding Favors Intramolecular Electron Transfer, Journal of the American Chemical Society, vol.126, issue.5, pp.1328-1329, 2004.
DOI : 10.1021/ja0384072

URL : https://hal.archives-ouvertes.fr/hal-00336072

M. Sensi, M. Del-barrio, C. Baffert, V. Fourmond, and C. Léger, New perspectives in hydrogenase direct electrochemistry, Current Opinion in Electrochemistry, vol.5, issue.1, pp.135-145, 2017.
DOI : 10.1016/j.coelec.2017.08.005

URL : https://hal.archives-ouvertes.fr/hal-01614142

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-State Catalytic Wave-Shapes for 2-Electron Reversible Electrocatalysts and Enzymes, Journal of the American Chemical Society, vol.135, issue.10, pp.3926-3938, 2013.
DOI : 10.1021/ja311607s

URL : https://hal.archives-ouvertes.fr/hal-01268145

B. J. Murphy, F. Sargent, and F. Armstrong, Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer, Energy Environ. Sci., vol.66, issue.4, pp.1426-1433, 2014.
DOI : 10.1007/s00284-012-0240-2

J. N. Butt, M. Filipiak, and W. R. Hagen, Direct Electrochemistry of Megasphaera Elsdenii Iron Hydrogenase. Definition of the Enzyme's Catalytic Operating Potential and Quantitation of the Catalytic Behaviour over a Continuous Potential Range, European Journal of Biochemistry, vol.30, issue.1, pp.116-122, 1997.
DOI : 10.1021/ja952489f

J. H. Artz, D. W. Mulder, M. W. Ratzloff, C. E. Lubner, O. A. Zadvornyy et al., Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron???Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis, Journal of the American Chemical Society, vol.139, issue.28, pp.9544-9550, 2017.
DOI : 10.1021/jacs.7b02099

S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al., Changing the Ligation of the Distal [4Fe4S] Cluster in NiFe Hydrogenase Impairs Inter- and Intramolecular Electron Transfers, Journal of the American Chemical Society, vol.128, issue.15, pp.5209-5218, 2006.
DOI : 10.1021/ja060233b

URL : https://hal.archives-ouvertes.fr/hal-00335157

F. Paris, C. Max-planck, . Inra, . Insa, and F. D. Toulouse, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany. c LISBP, Laboratoire de Chimie et Biologie des Métaux, vol.17, issue.38000

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al., Fontecilla-Camps, Proc. Natl. Acad. Sci, p.11188, 2008.

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-State Catalytic Wave-Shapes for 2-Electron Reversible Electrocatalysts and Enzymes, Journal of the American Chemical Society, vol.135, issue.10, p.3926, 2013.
DOI : 10.1021/ja311607s

URL : https://hal.archives-ouvertes.fr/hal-01268145

A. Adamska-venkatesh, D. Krawietz, J. Siebel, K. Weber, T. Happe et al., New Redox States Observed in [FeFe] Hydrogenases Reveal Redox Coupling Within the H-Cluster, Journal of the American Chemical Society, vol.136, issue.32, p.11339, 2014.
DOI : 10.1021/ja503390c

P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al., Meynial-Salles, I.; Soucaille, P.; Fontecilla-Camps, Nat. Chem. Biol. J. Energy Env. Sci, vol.6, issue.10, pp.63-75, 2010.