E. G. Perdiguero and F. Geissmann, The development and maintenance of resident macrophages, Nat. Immunol, vol.17, pp.2-8, 2015.
DOI : 10.1038/ni.3341

URL : http://europepmc.org/articles/pmc4950995?pdf=render

Y. Okabe and R. Medzhitov, Tissue biology perspective on macrophages, Nat. Immunol, vol.17, pp.9-17, 2016.
DOI : 10.1038/ni.3320

F. Ginhoux and M. Guilliams, Tissue-resident macrophage ontogeny and homeostasis, Immunity, vol.44, pp.439-449, 2016.
DOI : 10.1016/j.immuni.2016.02.024

URL : https://doi.org/10.1016/j.immuni.2016.02.024

E. Gomez-perdiguero, Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature, vol.518, pp.547-551, 2015.

G. Hoeffel, C-Myb( þ ) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages, Immunity, vol.42, pp.665-678, 2015.
DOI : 10.1016/j.immuni.2015.03.011

URL : http://europepmc.org/articles/pmc4545768?pdf=render

J. Sheng, C. Ruedl, and K. Karjalainen, Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells, Immunity, vol.43, pp.382-393, 2015.
DOI : 10.1016/j.immuni.2015.07.016

URL : https://doi.org/10.1016/j.immuni.2015.07.016

M. Guilliams, Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF, J. Exp. Med, vol.210, pp.1977-1992, 2013.

C. C. Bain, Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors, Mucosal Immunol, vol.6, pp.498-510, 2013.

C. C. Bain, Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice, Nat. Immunol, vol.15, pp.929-937, 2014.

S. Tamoutounour, Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin, Immunity, vol.39, pp.925-938, 2013.

S. Epelman, Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation, Immunity, vol.40, pp.91-104, 2014.
DOI : 10.1016/j.immuni.2013.11.019

URL : https://doi.org/10.1016/j.immuni.2013.11.019

K. Molawi, Progressive replacement of embryo-derived cardiac macrophages with age, J. Exp. Med, vol.211, pp.2151-2158, 2014.
DOI : 10.1084/jem.20140639

URL : http://jem.rupress.org/content/jem/211/11/2151.full.pdf

T. Heidt, Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction, Circ. Res, vol.115, pp.284-295, 2014.

C. C. Bain, Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities, Nat. Commun, vol.7, p.11852, 2016.
DOI : 10.1038/ncomms11852

URL : https://www.nature.com/articles/ncomms11852.pdf

Y. Lavin, Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment, Cell, vol.159, pp.1312-1326, 2014.
DOI : 10.1016/j.cell.2014.11.018

URL : https://doi.org/10.1016/j.cell.2014.11.018

L. Van-de-laar, Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages, Immunity, vol.44, pp.755-768, 2016.

S. H. Lee, P. M. Starkey, and S. Gordon, Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80, J. Exp. Med, vol.161, pp.475-489, 1985.

S. Tamoutounour, CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis, Eur. J. Immunol, vol.42, pp.3150-3166, 2012.

L. E. Smythies, Inflammation anergy in human intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB inactivation, J. Biol. Chem, vol.285, pp.19593-19604, 2010.
DOI : 10.1074/jbc.m109.069955

URL : http://www.jbc.org/content/285/25/19593.full.pdf

A. M. Platt, C. C. Bain, Y. Bordon, D. P. Sester, and A. M. Mowat, An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation, J. Immunol, vol.184, pp.6843-6854, 2010.
DOI : 10.4049/jimmunol.0903987

URL : http://www.jimmunol.org/content/184/12/6843.full.pdf

E. Zigmond, Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells, Immunity, vol.37, pp.1076-1090, 2012.

Y. Okabe and R. Medzhitov, Tissue-specific signals control reversible program of localization and functional polarization of macrophages, Cell, vol.157, pp.832-844, 2014.

C. Schneider, Induction of the nuclear receptor PPAR-g by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages, Nat. Immunol, vol.15, pp.1026-1037, 2014.

E. L. Gautier, Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nat. Immunol, vol.13, pp.1118-1128, 2012.

K. Asano, Intestinal CD169( þ ) macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes, Nat. Commun, vol.6, p.7802, 2015.
DOI : 10.1038/ncomms8802

URL : https://www.nature.com/articles/ncomms8802.pdf

O. Butovsky, Identification of a unique TGF-b-dependent molecular and functional signature in microglia, Nat. Neurosci, vol.17, pp.131-143, 2014.

A. Rivollier, J. He, A. Kole, V. Valatas, and B. L. Kelsall, Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon, J. Exp. Med, vol.209, pp.139-155, 2012.

E. Zigmond, Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis, Immunity, vol.40, pp.720-733, 2014.
DOI : 10.1016/j.immuni.2014.03.012

URL : https://doi.org/10.1016/j.immuni.2014.03.012

D. S. Shouval, Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function, Immunity, vol.40, pp.706-719, 2014.
DOI : 10.1016/j.immuni.2014.03.011

URL : https://doi.org/10.1016/j.immuni.2014.03.011

N. Hoshi, MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice, Nat. Commun, vol.3, p.1120, 2012.
DOI : 10.1038/ncomms2113

URL : https://www.nature.com/articles/ncomms2113.pdf

M. J. Girard-madoux, IL-10 control of CD11c þ myeloid cells is essential to maintain immune homeostasis in the small and large intestine, Oncotarget, vol.7, pp.32015-32030, 2016.

A. Maheshwari, TGF-beta2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine, Gastroenterology, vol.140, pp.242-253, 2011.

C. Jakubzick, Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes, Immunity, vol.39, pp.599-610, 2013.
DOI : 10.1016/j.immuni.2013.08.007

URL : https://doi.org/10.1016/j.immuni.2013.08.007

L. Ruggiero, M. P. Connor, J. Chen, R. Langen, and S. C. Finnemann, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5 À / À or Mfge8 À / À mouse retina, Proc. Natl. Acad. Sci. USA, vol.109, pp.8145-8148, 2012.

A. Lacy-hulbert, Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins, Proc. Natl. Acad. Sci. USA, vol.104, pp.15823-15828, 2007.
DOI : 10.1073/pnas.0707421104

URL : http://www.pnas.org/content/104/40/15823.full.pdf

T. Bauer, Identification of Axl as a downstream effector of TGF-b1 during Langerhans cell differentiation and epidermal homeostasis, J. Exp. Med, vol.209, pp.2033-2047, 2012.

P. E. Morton, TNFa promotes CAR-dependent migration of leukocytes across epithelial monolayers, Sci. Rep, vol.6, p.26321, 2016.
DOI : 10.1038/srep26321

URL : https://doi.org/10.1038/srep26321

J. H. Niess, CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance, Science, vol.307, pp.254-258, 2005.
DOI : 10.1126/science.1102901

M. Chieppa, M. Rescigno, A. Y. Huang, and R. N. Germain, Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement, J. Exp. Med, vol.203, pp.2841-2852, 2006.

C. Garlanda, F. Riva, E. Bonavita, and A. Mantovani, Negative regulatory receptors of the IL-1 family, Semin. Immunol, vol.25, pp.408-415, 2013.
DOI : 10.1016/j.smim.2013.10.019

S. Huber, IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature, vol.491, pp.259-263, 2012.

C. A. Dinarello, D. Novick, S. Kim, and G. Kaplanski, Interleukin-18 and IL-18 binding protein, Front. Immunol, vol.4, p.289, 2013.
DOI : 10.3389/fimmu.2013.00289

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2013.00289/pdf

J. Yang, The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo, J. Immunol, vol.187, pp.1113-1119, 2011.

C. Varol, Intestinal lamina propria dendritic cell subsets have different origin and functions, Immunity, vol.31, pp.502-512, 2009.
DOI : 10.1016/j.immuni.2009.06.025

URL : https://doi.org/10.1016/j.immuni.2009.06.025

A. Jarry, C. Bossard, G. Sarrabayrouse, J. Mosnier, and C. L. Laboisse, Loss of interleukin-10 or transforming growth factor b signaling in the human colon initiates a T-helper 1 response via distinct pathways, Gastroenterology, vol.141, pp.1887-96, 2011.

M. Rosas, The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal, Science, vol.344, pp.645-648, 2014.
DOI : 10.1126/science.1251414

URL : http://europepmc.org/articles/pmc4185421?pdf=render

E. L. Gautier, Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival, J. Exp. Med, vol.211, pp.1525-1531, 2014.
DOI : 10.1084/jem.20140570

URL : http://jem.rupress.org/content/jem/211/8/1525.full.pdf

A. and N. , The nuclear receptor LXRa controls the functional specialization of splenic macrophages, Nat. Immunol, vol.14, pp.831-839, 2013.

Y. Lavin, A. Mortha, A. Rahman, and M. Merad, Regulation of macrophage development and function in peripheral tissues, Nat. Rev, vol.15, pp.731-744, 2015.

O. Fainaru, Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation, EMBO J, vol.23, pp.969-979, 2004.

O. Brenner, Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia, Proc. Natl. Acad. Sci. USA, vol.101, pp.16016-16021, 2004.

M. Chopin, Langerhans cells are generated by two distinct PU.1dependent transcriptional networks, J. Exp. Med, vol.210, pp.2967-2980, 2013.

A. Schlitzer, IRF4 transcription factor-dependent CD11b þ dendritic cells in human and mouse control mucosal IL-17 cytokine responses, Immunity, vol.38, pp.970-983, 2013.

C. Ishifune, Differentiation of CD11c þ CX3CR1 þ cells in the small intestine requires Notch signaling, Proc. Natl. Acad. Sci. USA, vol.111, pp.5986-5991, 2014.

C. A. Klebanoff, Retinoic acid controls the homeostasis of pre-cDCderived splenic and intestinal dendritic cells, J. Exp. Med, vol.210, pp.1961-1976, 2013.

Y. Ueda, Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10, Int. Immunol, vol.22, pp.953-962, 2010.

S. Jung, Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion, Mol. Cell Biol, vol.20, pp.4106-4114, 2000.

J. M. Kel, M. J. Girard-madoux, B. Reizis, and B. E. Clausen, TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis, J. Immunol, vol.185, pp.3248-3255, 2010.

M. L. Caton, M. R. Smith-raska, and B. Reizis, Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen, J. Exp. Med, vol.204, pp.1653-1664, 2007.

J. Larsson, Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice, EMBO J, vol.20, pp.1663-1673, 2001.

L. Boring, Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice, J. Clin. Invest, vol.100, pp.2552-2561, 1997.

C. C. Bain and A. M. Mowat, CD200 receptor and macrophage function in the intestine, Immunobiology, vol.217, pp.643-651, 2011.

S. Henri, CD207 þ CD103 þ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells, J. Exp. Med, vol.207, pp.189-206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502774

J. Wang, D. Duncan, Z. Shi, and B. Zhang, WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013, Nucleic Acids Res, vol.41, pp.77-83, 2013.