A. M. Mowat, Anatomical basis of tolerance and immunity to intestinal antigens, Nature Reviews Immunology, vol.158, issue.4, pp.331-341, 2003.
DOI : 10.1016/0167-5699(87)90853-X

T. Worbs, Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells, The Journal of Experimental Medicine, vol.56, issue.3, pp.519-527, 2006.
DOI : 10.1126/science.1091334

S. A. Houston, The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct, Mucosal Immunology, vol.100, issue.2, pp.468-478, 2016.
DOI : 10.1038/ni.3079

S. Veenbergen, Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103+ dendritic cells, Mucosal Immunology, vol.109, issue.4, pp.894-906, 2016.
DOI : 10.1126/science.1091334

V. Cerovic, C. C. Bain, A. M. Mowat, and S. W. Milling, Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol, pp.270-277, 2014.

C. L. Scott, CCR2+CD103??? intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells, Mucosal Immunology, vol.95, issue.2, pp.327-339, 2015.
DOI : 10.1084/jem.186.10.1757

URL : http://doi.org/10.1038/mi.2014.70

V. Cerovic, Intestinal CD103??? dendritic cells migrate in lymph and prime effector T cells, Mucosal Immunology, vol.176, issue.1, pp.104-113, 2013.
DOI : 10.1038/ni1511

E. K. Persson, C. L. Scott, A. M. Mowat, and W. W. Agace, Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function, European Journal of Immunology, vol.207, issue.Suppl 1, pp.3098-3107, 2013.
DOI : 10.1084/jem.20092140

K. Crozat, Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8??+ Type, The Journal of Immunology, vol.187, issue.9, pp.4411-4415, 2011.
DOI : 10.4049/jimmunol.1101717

URL : https://hal.archives-ouvertes.fr/hal-00672203

V. Cerovic, Lymph-borne CD8??+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells, Mucosal Immunology, vol.8, issue.1, pp.38-48, 2014.
DOI : 10.1084/jem.20080414

K. M. Luda, IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis, Immunity, vol.44, issue.4, pp.860-874, 2016.
DOI : 10.1016/j.immuni.2016.02.008

URL : https://doi.org/10.1016/j.immuni.2016.02.008

M. Guilliams, Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nature Reviews Immunology, vol.114, issue.8, pp.571-578, 2014.
DOI : 10.1161/CIRCRESAHA.114.303204

M. Greter, GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells, Immunity, vol.36, issue.6, pp.1031-1046, 2012.
DOI : 10.1016/j.immuni.2012.03.027

K. L. Lewis, Notch2 Receptor Signaling Controls Functional Differentiation of Dendritic Cells in the Spleen and Intestine, Immunity, vol.35, issue.5, pp.780-791, 2011.
DOI : 10.1016/j.immuni.2011.08.013

A. Schlitzer, IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses, Immunity, vol.38, issue.5, pp.970-983, 2013.
DOI : 10.1016/j.immuni.2013.04.011

R. Zeng, M. Bscheider, K. Lahl, M. Lee, and E. Butcher, Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid, Mucosal Immunology, vol.204, issue.1, pp.183-193, 2016.
DOI : 10.1016/j.immuni.2013.04.011

C. L. Scott, Z. M. Tfp, K. S. Beckham, G. Douce, and A. M. Mowat, DCs in the intestinal lamina propria, European Journal of Immunology, vol.217, issue.12, pp.3658-3668, 2014.
DOI : 10.1016/j.imbio.2011.11.004

P. J. Kilshaw and S. J. Murant, A new surface antigen on intraepithelial lymphocytes in the intestine, European Journal of Immunology, vol.163, issue.10, pp.2201-2207, 1990.
DOI : 10.1002/eji.1830201008

O. Annacker, Essential role for CD103 in the T cell???mediated regulation of experimental colitis, The Journal of Experimental Medicine, vol.96, issue.8, pp.1051-1061, 2005.
DOI : 10.1084/jem.182.5.1357

O. Butovsky, Identification of a unique TGF-?????dependent molecular and functional signature in microglia, Nature Neuroscience, vol.22, issue.2, pp.131-143, 2014.
DOI : 10.1038/nmeth1019

T. A. Borkowski, J. J. Letterio, A. G. Farr, and M. C. Udey, A Role for Endogenous Transforming Growth Factor beta 1 in Langerhans Cell Biology: ??The Skin of ????Transforming Growth Factor beta 1 Null Mice Is Devoid of ??Epidermal Langerhans Cells, Journal of Experimental Medicine, vol.184, issue.6, pp.2417-2422, 1996.
DOI : 10.1084/jem.184.6.2417

S. P. Zahner, Conditional Deletion of TGF-??R1 Using Langerin-Cre Mice Results in Langerhans Cell Deficiency and Reduced Contact Hypersensitivity, The Journal of Immunology, vol.187, issue.10, pp.5069-5076, 2011.
DOI : 10.4049/jimmunol.1101880

J. M. Kel, M. J. Girard-madoux, B. Reizis, and B. E. Clausen, TGF-?? Is Required To Maintain the Pool of Immature Langerhans Cells in the Epidermis, The Journal of Immunology, vol.185, issue.6, pp.3248-3255, 2010.
DOI : 10.4049/jimmunol.1000981

C. C. Bain, Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice, Nature Immunology, vol.217, issue.10, pp.929-937, 2014.
DOI : 10.1016/j.imbio.2011.11.004

M. L. Caton, M. R. Smith-raska, and B. Reizis, dendritic cells in the spleen, The Journal of Experimental Medicine, vol.154, issue.7, pp.1653-1664, 2007.
DOI : 10.1126/science.7660125

R. Ramalingam, Dendritic Cell-Specific Disruption of TGF-?? Receptor II Leads to Altered Regulatory T Cell Phenotype and Spontaneous Multiorgan Autoimmunity, The Journal of Immunology, vol.189, issue.8, pp.3878-3893, 2012.
DOI : 10.4049/jimmunol.1201029

L. Gorelik and R. A. Flavell, Abrogation of TGF?? Signaling in T Cells Leads to Spontaneous T Cell Differentiation and Autoimmune Disease, Immunity, vol.12, issue.2, pp.171-181, 2000.
DOI : 10.1016/S1074-7613(00)80170-3

J. C. Marie, D. Liggitt, and A. Rudensky, Cellular Mechanisms of Fatal Early-Onset Autoimmunity in Mice with the T Cell-Specific Targeting of Transforming Growth Factor-?? Receptor, Immunity, vol.25, issue.3, pp.441-454, 2006.
DOI : 10.1016/j.immuni.2006.07.012

S. Tamoutounour, CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis, European Journal of Immunology, vol.158, issue.12, pp.3150-3166, 2012.
DOI : 10.1182/blood-2012-01-406967

M. P. Schön, Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice, J. Immunol, vol.162, pp.6641-6649, 1999.

L. Van-de-laar, Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages, Immunity, vol.44, issue.4, pp.755-768, 2016.
DOI : 10.1016/j.immuni.2016.02.017

C. L. Scott, The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2, The Journal of Experimental Medicine, vol.213, issue.6, pp.897-911, 2016.
DOI : 10.1016/S1074-7613(00)80649-4

J. C. Miller, Deciphering the transcriptional network of the dendritic cell lineage, Nature Immunology, vol.167, issue.9, pp.888-899, 2013.
DOI : 10.1103/PhysRevLett.76.3251

S. Carpentier, Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells, Journal of Immunological Methods, vol.432, pp.35-49, 2016.
DOI : 10.1016/j.jim.2016.02.023

URL : https://hal.archives-ouvertes.fr/hal-01438541

E. K. Persson, IRF4 Transcription-Factor-Dependent CD103+CD11b+ Dendritic Cells Drive Mucosal T Helper 17 Cell Differentiation, Immunity, vol.38, issue.5, pp.958-969, 2013.
DOI : 10.1016/j.immuni.2013.03.009

URL : https://doi.org/10.1016/j.immuni.2013.03.009

J. L. Coombes, regulatory T cells via a TGF-????? and retinoic acid???dependent mechanism, The Journal of Experimental Medicine, vol.204, issue.8, pp.1757-1764, 2007.
DOI : 10.1093/nar/29.9.e45

N. E. Welty, Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism, The Journal of Experimental Medicine, vol.5, issue.10, pp.2011-2024, 2013.
DOI : 10.1038/nm1720

URL : http://jem.rupress.org/content/jem/210/10/2011.full.pdf

M. A. Kinnebrew, Interleukin 23 Production by Intestinal CD103+CD11b+ Dendritic Cells in Response to Bacterial Flagellin Enhances Mucosal Innate Immune Defense, Immunity, vol.36, issue.2, pp.276-287, 2012.
DOI : 10.1016/j.immuni.2011.12.011

K. Hirota, Fate mapping of IL-17-producing T cells in inflammatory responses, Nature Immunology, vol.181, issue.3, pp.255-263, 2011.
DOI : 10.1186/1471-213X-1-4

A. M. Mowat and W. W. Agace, Regional specialization within the intestinal immune system, Nature Reviews Immunology, vol.12, issue.10, pp.667-685, 2014.
DOI : 10.1111/j.1749-6632.2010.05708.x

B. U. Schraml, Genetic Tracing via DNGR-1 Expression History Defines Dendritic Cells as a Hematopoietic Lineage, Cell, vol.154, issue.4, pp.843-858, 2013.
DOI : 10.1016/j.cell.2013.07.014

M. O. Li, S. Sanjabi, and R. A. Flavell, Transforming Growth Factor-?? Controls Development, Homeostasis, and Tolerance of T Cells by Regulatory T Cell-Dependent and -Independent Mechanisms, Immunity, vol.25, issue.3, pp.455-471, 2006.
DOI : 10.1016/j.immuni.2006.07.011

A. Bobr, Autocrine/paracrine TGF-?1 inhibits langerhans cell migration, Proc. Natl Acad. Sci. USA, pp.10492-10497, 2012.
DOI : 10.1073/pnas.1119178109

URL : http://www.pnas.org/content/109/26/10492.full.pdf

J. Mohammed, Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-??, Nature Immunology, vol.254, issue.4, pp.414-421, 2016.
DOI : 10.1083/jcb.200312172

T. Bauer, Identification of Axl as a downstream effector of TGF-??1 during Langerhans cell differentiation and epidermal homeostasis, The Journal of Experimental Medicine, vol.113, issue.11, pp.2033-2047, 2012.
DOI : 10.1038/sj.onc.1208927

P. B. Watchmaker, Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice, Nature Immunology, vol.176, issue.1, pp.98-108, 2014.
DOI : 10.1093/bioinformatics/btl117

A. Bouloc, M. Bagot, S. Delaire, A. Bensussan, and L. Boumsell, Triggering CD101 molecule on human cutaneous dendritic cells inhibits T cell proliferation via IL-10 production, European Journal of Immunology, vol.90, issue.11, pp.3132-3139, 2000.
DOI : 10.1073/pnas.90.14.6586

R. Schey, CD101 inhibits the expansion of colitogenic T cells, Mucosal Immunology, vol.154, issue.5, pp.1205-1217, 2016.
DOI : 10.1038/nprot.2006.446

I. Fernandez, CD101 Surface Expression Discriminates Potency Among Murine FoxP3+ Regulatory T Cells, The Journal of Immunology, vol.179, issue.5, pp.2808-2814, 2007.
DOI : 10.4049/jimmunol.179.5.2808

D. B. Rainbow, Evidence that Cd101 Is an Autoimmune Diabetes Gene in Nonobese Diabetic Mice, The Journal of Immunology, vol.187, issue.1, pp.325-336, 2011.
DOI : 10.4049/jimmunol.1003523

|. Doi, 620 | DOI: 10.1038/s41467-017-00658-6 | www.nature.com/naturecommunications 51. Ornatowska, M. et al. Functional genomics of silencing TREM-1 on TLR4 signaling in macrophages, NATURE COMMUNICATIONS ARTICLE NATURE COMMUNICATIONS | Am. J. Physiol. Lung Cell Mol. Physiol, vol.8, issue.293, pp.10-1038, 2007.

D. Pierobon, Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression, European Journal of Immunology, vol.72, issue.Suppl 2, pp.949-966, 2013.
DOI : 10.1158/0008-5472.CAN-12-0938

A. T. Satpathy, Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens, Nature Immunology, vol.172, issue.9, pp.937-948, 2013.
DOI : 10.1038/ni1518

URL : http://europepmc.org/articles/pmc3788683?pdf=render

C. A. Klebanoff, Retinoic acid controls the homeostasis of pre-cDC???derived splenic and intestinal dendritic cells, The Journal of Experimental Medicine, vol.129, issue.10, pp.1961-1976, 2013.
DOI : 10.1172/JCI200214989

T. L. Denning, Functional Specializations of Intestinal Dendritic Cell and Macrophage Subsets That Control Th17 and Regulatory T Cell Responses Are Dependent on the T Cell/APC Ratio, Source of Mouse Strain, and Regional Localization, The Journal of Immunology, vol.187, issue.2, pp.733-747, 2011.
DOI : 10.4049/jimmunol.1002701

O. Fainaru, Runx3 regulates mouse TGF-??-mediated dendritic cell function and its absence results in airway inflammation, The EMBO Journal, vol.23, issue.4, pp.969-979, 2004.
DOI : 10.1038/sj.emboj.7600085

K. Fujimoto, A New Subset of CD103+CD8??+ Dendritic Cells in the Small Intestine Expresses TLR3, TLR7, and TLR9 and Induces Th1 Response and CTL Activity, The Journal of Immunology, vol.186, issue.11, pp.6287-6295, 2011.
DOI : 10.4049/jimmunol.1004036

M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, TGF?? in the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation of IL-17-Producing T Cells, Immunity, vol.24, issue.2, pp.179-189, 2006.
DOI : 10.1016/j.immuni.2006.01.001

I. Kashiwagi, Smad2 and Smad3 Inversely Regulate TGF-?? Autoinduction in Clostridium butyricum-Activated Dendritic Cells, Immunity, vol.43, issue.1, pp.65-79, 2015.
DOI : 10.1016/j.immuni.2015.06.010

URL : https://doi.org/10.1016/j.immuni.2015.06.010

D. Esterházy, Classical dendritic cells are required for dietary antigen???mediated induction of peripheral Treg cells and tolerance, Nature Immunology, vol.123, issue.5, pp.545-555, 2016.
DOI : 10.1371/journal.pone.0008442

S. Uematsu, Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5, Nature Immunology, vol.76, issue.7, pp.769-776, 2008.
DOI : 10.4049/jimmunol.173.6.3668

P. P. Van-lierop, T-cell regulation of neutrophil infiltrate at the early stages of a murine colitis model, Inflammatory Bowel Diseases, vol.45, issue.3, pp.442-451, 2010.
DOI : 10.1189/jlb.0408231

C. L. Scott, C. C. Bain, and A. M. Mowat, Isolation and Identification of Intestinal Myeloid Cells, Methods Mol. Biol, vol.20, issue.11, pp.223-239, 2017.
DOI : 10.1128/MCB.20.11.4106-4114.2000

C. C. Bain and A. M. Mowat, CD200 receptor and macrophage function in the intestine, Immunobiology, vol.217, issue.6, pp.643-651, 2011.
DOI : 10.1016/j.imbio.2011.11.004

J. Larsson, Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice, The EMBO Journal, vol.20, issue.7, pp.1663-1673, 2001.
DOI : 10.1093/emboj/20.7.1663

S. H. Thibault-carpentier, M. D. , T. L. , B. M. , G. et al., with assistance from Emeline Pollet (CIML) This work was supported by Wellcome Trust UK Project Grant 094763 to C the Medical Research Council UK and grants from the Netherlands Organization for Scientific Research (NWO, VIDI 917-76- 365) to B.E.C. C.L.S. is supported by a Horizon 2020 Marie Curie Intra-European Fellowship (IEF). B.E.C. is currently supported by the German Research Foundation (DFG) and the Research Centre for Immunotherapy (FZI) Mainz. Author contributions Performed experiments and data analysis