A. L. Croxford, F. C. Kurschus, and A. Waisman, Mouse models for multiple sclerosis: historical facts and future implications, Biochim. Biophys. Acta, vol.1812, pp.177-83, 2011.

K. C. Williams, E. Ulvestad, and W. F. Hickey, Immunology of multiple sclerosis, Clin. Neurosci, vol.2, pp.229-274, 1994.

R. M. Ransohoff, Animal models of multiple sclerosis: the good, the bad and the bottom line, Nat. Neurosci, vol.15, pp.1074-1081, 2012.

B. Ajami, J. L. Bennett, C. Krieger, K. M. Mcnagny, and F. M. Rossi, Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool, Nat. Neurosci, vol.14, pp.1142-1151, 2011.

J. Goverman, Autoimmune T cell responses in the central nervous system, Nat. Rev. Immunol, vol.9, pp.393-407, 2009.

V. Siffrin, In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis, Immunity, vol.33, pp.424-460, 2010.

K. Kierdorf, Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways, Nat. Neurosci, vol.16, pp.273-280, 2013.

J. Bruttger, Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System, Immunity, vol.43, pp.92-107, 2015.

F. Ginhoux, Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (80-), vol.330, pp.841-846, 2010.

E. Gomez-perdiguero, Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature, vol.518, pp.547-51, 2015.

M. Prinz, D. Erny, and N. Hagemeyer, Ontogeny and homeostasis of CNS myeloid cells, Nat. Immunol, vol.18, pp.385-392, 2017.

T. Goldmann, Origin, fate and dynamics of macrophages at central nervous system interfaces, Nat. Immunol, vol.17, pp.797-805, 2016.

H. Gao, Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis, Cell Rep, vol.18, pp.198-212, 2017.

R. Yamasaki, Differential roles of microglia and monocytes in the inflamed central nervous system, J. Exp. Med, vol.211, pp.1533-1582, 2014.

S. Tamoutounour, Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin, SCientifiC REpoRts |, vol.8, pp.925-963, 2013.

M. Guilliams, Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species, Immunity, vol.45, pp.669-684, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01376187

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, Long-and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury, J. Physiol, vol.591, pp.4895-902, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862129

K. K. Fenrich, Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows, J. Physiol, vol.590, pp.3665-75, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00839110

K. K. Fenrich, P. Weber, G. Rougon, and F. Debarbieux, Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis, J. Vis. Exp. e50826, 2013.

W. Brück, The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage, J. Neurol, vol.252, pp.3-9, 2005.

C. Ricard, Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice, Sci. Rep, vol.6, p.26381, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01468773

C. Langlet, CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization, J. Immunol, vol.188, pp.1751-1760, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685822

C. C. Bain, Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors, Mucosal Immunol, vol.6, pp.498-510, 2013.

A. Wlodarczyk, Pathologic and protective roles for microglial subsets and bone marrow-and blood-derived myeloid cells in central nervous system inflammation, Front. Immunol, vol.6, 2015.

M. Greter, I. Lelios, and A. L. Croxford, Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation, Front. Immunol, vol.6, p.249, 2015.

B. Becher, High-dimensional analysis of the murine myeloid cell system, Nat. Immunol, vol.15, pp.1181-1189, 2014.

B. Aubé, Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases, J. Immunol, vol.193, pp.2438-54, 2014.

C. Schläger, Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid, Nature, vol.530, pp.349-353, 2016.

B. Rossi and G. Constantin, Live Imaging of Immune Responses in Experimental Models of Multiple Sclerosis, Front Immunol, vol.7, p.506, 2016.

M. Mizutani, The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood, J. Immunol, vol.188, pp.29-36, 2012.

N. Saederup, Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice, PLoS One, vol.5, p.13693, 2010.

B. Zhang and J. C. Gensel, Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord, Exp. Neurol, vol.258, pp.112-120, 2014.

B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, and A. Zychlinsky, Neutrophil Function: From Mechanisms to Disease, Annu. Rev. Immunol, vol.30, pp.459-489, 2012.

J. M. Rumble, Neutrophil-related factors as biomarkers in EAE and MS, J. Exp. Med, vol.212, pp.23-35, 2015.

B. Zhu, CD11b+ Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis, J. Immunol, vol.179, pp.5228-5265, 2007.

B. D. Clarkson, CCR2-Dependent Dendritic Cell Accumulation in the Central Nervous System during Early Effector Experimental Autoimmune Encephalomyelitis Is Essential for Effector T Cell Restimulation In Situ and Disease Progression, J. Immunol, vol.194, pp.531-541, 2015.

R. M. Ransohoff, P. Kivisäkk, and G. Kidd, Three or more routes for leukocyte migration into the central nervous system, Nat. Rev. Immunol, vol.3, pp.569-581, 2003.

R. Shechter, Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus, Immunity, vol.38, pp.555-69, 2013.

N. V. Serbina and E. G. Pamer, Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nat. Immunol, vol.7, pp.311-317, 2006.

R. Parsa, TGF? regulates persistent neuroinflammation by controlling Th1 polarization and ROS production via monocytederived dendritic cells, Glia, vol.64, pp.1925-1937, 2016.

A. London, M. Cohen, and M. Schwartz, Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair, Front. Cell. Neurosci, vol.7, p.34, 2013.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

A. Gottfried-blackmore, Acute in vivo exposure to interferon-? enables resident brain dendritic cells to become effective antigen presenting cells, Proc. Natl. Acad. Sci, vol.106, pp.20918-20923, 2009.

D. Y. Vogel, Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status, J. Neuroinflammation, vol.10, p.35, 2013.

M. El-behi, Adaptive human immunity drives remyelination in a mouse model of demyelination, Brain, vol.140, pp.967-980, 2017.

N. Koning, L. Bö, R. M. Hoek, and I. Huitinga, Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions, Ann. Neurol, vol.62, pp.504-514, 2007.

M. C. Agahozo, L. Peferoen, D. Baker, and S. Amor, CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis -Targeting T or B cells, Mult. Scler. Relat. Disord, vol.9, pp.110-117, 2016.