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The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of
any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of
turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has
been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar
vortices with varying respective amplitudes, depending on the control parameters and geometry. In this
Letter, we present a suite of numerical simulations to investigate the saturation and the transition from
vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of
the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the
geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental
observations within one idealized local model and complement them by reaching more extreme flow
parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave
turbulence is characterized for the first time. This regime is expected in planetary interiors.
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The elliptical instability is a fundamental mechanism of
importance in a wide range of fluid phenomena. Originally
described in the context of strained vortices [1], it has been
studied in various situations, such as in vortex dipoles and
in wakes. More generally, it has been proposed as a general
process to transfer energy to smaller scales in turbulence
(see [2] and references within). It is important for geo-
physical fluid dynamics because it can drive flows in
planetary cores subjected to tidal deformations [3–6]. It
has been invoked to explain the magnetic field of the early
Moon [7] and Earth [8]. This instability develops in rotating
fluids when the streamlines are deformed into ellipses. Its
linear growth, due to the resonance of two inertial waves
with the elliptical basic flow, is well described both
theoretically [2,9–11] and experimentally [3–5,12]. The
nonlinear saturation of the elliptical instability remains
poorly understood, but it is the relevant regime to describe
vortex core breakdown [13], as well as dissipation and
magnetic field generation in planetary cores [14].
Simulations and experiments of the elliptical instability

exhibit a variety of nonlinear behaviors, depending on
the values of the control parameters (the ellipticity of the
streamlines and the viscosity) and on the geometry. The
saturation of the instability can lead to either sustained flows
[15–17] or cyclic behaviors between laminar and turbulent
states [12,18–20], reminiscent of the “resonant collapse” of
inertial waves observed by McEwan [21]. The presence or
absence of geostrophic modes appears to be important, but
the diversity remains to be explained in detail. Indeed, each
inertial wave excited by elliptical instability of the base flow
can be itself unstable to a triadic resonancewith another pair
of inertial waves [22]: these secondary instabilities have

been observed both numerically [17,23] and experimentally
[24]. Whether these multiple resonances asymptotically
lead to a wave turbulence regime [25,26], similar to the
recently observed regimes with flexural waves in plates
[27], gravity-capillary waves [28], and internal waves [29],
remains to be seen. Barker and Lithwick [19], in their local
model of the elliptical instability, nonetheless showed that
strong geostrophic flows emerge during the saturation and
disrupt the inertial wave resonances, leading instead to
growth and decay cycles. This competition between dom-
inant geostrophicmodes and inertial waves is reminiscent of
the duality observed in rotating turbulence where, on one
hand, geostrophic flows are widely observed [30], and on
the other hand, inertial waves have been shown to survive on
top of the turbulent background [31–34]. Conversely from
experiments and numerical simulations of rotating turbu-
lence, where energy is injected arbitrarily into both vortices
and inertial waves through an external artificial forcing, the
elliptical instability provides a natural mechanism that
initially injects energy into a few inertial waves only, whose
properties can be theoretically predicted.
We focus here on the instabilities growing from a base

flow made of solid body rotation at frequency Ω plus an
elliptic deformation rotating at frequency n. Both solid-
body rotation and deformation are aligned with the vertical
axis. In the frame rotating with the deformation, the base
flow Ub reads [19]

Ub ¼−γβ
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where we have introduced γ ≡ ðΩ − nÞ and β the ellipticity.
This base flow can be seen as a local model of a
periodically strained vortex [10] or of a tidally deformed
planetary core [19] and is a nonlinear inviscid solution of
the Navier-Stokes equations written in the rotating frame. It
is responsible for the parametric subharmonic excitation of
two inertial waves with frequencies close to γ, provided
jγj < 2Ω [6]. The dynamics of the perturbation u around
the base flow Ub is governed by the following set of
equations:

∂tuþ ðUb:∇Þuþ ðu · ∇ÞUb þ ðu · ∇Þuþ 2Ω × u

¼ −∇Πþ ν∇2u ð2Þ
∇ · u ¼ 0; ð3Þ

where Π is the modified pressure, ensuring the incom-
pressibility of the dynamics, and ν is the constant kinematic
viscosity. We assume that the flow is homogeneous, thus
enabling us to carry out pseudospectral direct numerical
simulations of Eqs. (2)–(3) in a so-called periodic shearing
box. This is achieved using the SNOOPY code, introduced
by Lesur [35] and adapted to the study of the elliptical
instability by Barker [19]. The perturbed flow is solved in a
cubic box of size Lwith periodic boundary conditions in all
three directions. Lengths and time are normalized by L and
Ω−1, respectively. Simulations are initiated from a broad-
band noise for wave numbers 4 ≤ k=ð2πÞ ≤ 20, though we
obtain the same results if we instead adopt white noise. The
control parameters are the normalized differential rotation
γ=Ω, the ellipticity β, which can be regarded as an input
Rossby number, and the local Ekman number based on the
box size E≡ ν=ðΩL2Þ. In the following, we choose
β ¼ 5 × 10−2, 10−6 ≤ E ≤ 10−5, and γ=Ω is set to 1.5.
The spatial resolution is up to 512 grid points in each
direction (see details in Supplemental Material [36]).
Contrary to previous global DNS [17,37], we focus on

values of β as small as possible as it is below 10−3 in
planetary interiors. The value of E is a compromise
between our desire to make the flow fully turbulent but
have the simulation well resolved. This number is usually

between 10−15 and 10−10 in planetary cores, essentially
because of their massive size (see Supplemental Material
for further information [36]). The ratio γ=Ω is set suffi-
ciently high to avoid time scale separation between the
forcing and rotation. The growth rate of the elliptical
instability is an increasing function of γβ [2]; the value
1.5 produces rapid turbulent saturation and ensures the
selection of a mode with a reasonably small wavelength
compared to L. Other forcing frequencies have been
considered (see, e.g., Supplemental Material [36] for
γ=Ω ¼ 1), and the results are qualitatively unchanged.
Snapshots of the evolving flow are displayed in Fig. 1,

with the kinetic energy of the fluctuating velocity field
decomposed into the geostrophic and the residual non-
geostrophic 3D components. As previously shown in [19],
we first observe the exponential growth of a few planar
waves [Fig. 1(a)], whose wave number kres=ð2πÞ is between
6 and 7, thus ensuring a reasonable scale separation
between the small-scale resonating waves and the size of
the periodic box. The growth rate of the instability is
consistent with theoretical estimates [9,10], taking into
account the bulk viscous damping. The geostrophic com-
ponent grows at twice the instability growth rate, which
confirms that it is driven by the direct nonlinear interactions
of the resonant inertial waves and not by a secondary
instability [22]. While the nonlinear interactions of inertial
waves cannot lead to geostrophic modes with asymptoti-
cally low Rossby [39], this is not true for our simulation at a
finite Rossby number. In the saturated phase, Fig. 1(b)
reveals the emergence of strong columnar vortices aligned
with and invariant along the axis of rotation, as observed in
[[19] Fig. 5]. The energy stored in the geostrophic modes is
comparable to the energy in the rest of the flow. Similarly to
what is observed in forced rotating turbulence [31,40] or
rapidly rotating thermal convection [41–43], a nonlocal
inverse cascade of the geostrophic modes takes place until,
at t≃ 120 rotations onwards, one single large-scale vortex,
or condensate, remains [Fig. 1(c)]. Consequently, the
kinetic energy of the nongeostrophic component drops
by two orders of magnitude.

(a) (b) (c)

FIG. 1. Left: typical evolution of the volume-averaged kinetic energy for E ¼ 10−5 and a 2563 resolution from the exponential growth
of a few waves (a) to its nonlinear saturation (b) and (c). Continuous and dashed lines account for exponential growth with rates 2σ and
4σ, respectively, with σ the theoretical viscous growth rate of the instability. The velocity amplitudes are normalized by k−1resΩ. Right:
corresponding typical snapshots of the vertical vorticity normalized by the background vorticity.
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Although they are the primary structures during the
exponential growth phase of the instability, the latter result
shows that inertial waves are no longer the main contri-
bution to the flow during the late stages of the saturation.
Following [31,32], we analyze how the kinetic energy is
located around the dispersion relation of inertial waves
given by ω ¼ �2 cos θ, where ω is the dimensionless
frequency, and θ is the angle between the wave vector
and the rotation axis. This is achieved by computing the
spatiotemporal Fourier transform ûðk;ωÞ of the velocity
field uðx; tÞ and summing contributions associated with the
same angle θ. The spectral energy jûðθ;ωÞj2 resulting from
this approach is displayed in Fig. 2. During the growth
phase (t ¼ 10 to t ¼ 30 in Fig. 1), most of the energy is
localized on the dispersion relation at the frequencies
�γ=Ω [Fig. 2(a)], as expected from the temporal resonance
condition with the base flow frequency 2γ [2,6]. In the early
times of the saturated phase (t ¼ 50 to t ¼ 105 in Fig. 1),
the geostrophic flow grows in amplitude, and departure
from the dispersion relation is observed while the energy
remains localized close to frequencies around γ=Ω
[Fig. 2(b)]. We interpret this result as follows: the base
flow excites one particular frequency (fixed by the initial
resonance condition with the base flow), while the wave
vectors adapt themselves to interact with the growing
geostrophic modes, whose energy is localized at
θ ≈ π=2. The geostrophic flow is dominantly cyclonic,
as commonly observed in the rotating turbulence [44,45],
and the increased apparent vorticity induces a shift toward
larger values of θ. As the geostrophic vortices grow in
amplitude in phase c (from t ¼ 140 onwards in Fig. 1), no
inertial wave can be clearly identified [Fig. 2(c)].
Correspondingly, the nongeostrophic kinetic energy
decreases, as observed in Fig. 1. After a viscous time
scale, the geostrophic correction to the base flow is
eventually dissipated, leading to another resonance and
so on (more details about these cycles can be found in [19]).
In the following, we question the universality of these

results. Our simulations are designed to study locally the
properties of the flow in a wider container. As the
geostrophic modes are invariant along the rotation axis,

they should connect with boundaries. This interaction
induces a secondary flow known as Ekman pumping,
which acts as a bulk friction on these modes. As is routinely
done in quasigeostrophic models of rapidly rotating fluids
[46] and in confined inertial wave turbulence [47], an
additional term is, therefore, added to the dynamics of the
geostrophic part of the flow uG, which reads (in appropiate
units) as [48]

F ½uG� ¼ −
ffiffiffiffi
E

p
ðL=hÞuG ¼ −

ffiffiffiffi
E

p
fruG: ð4Þ

Here, h is the height of the container along the rotation axis.
In Fourier space, (4) is tantamount to adding a term
−frE1=2ûðkÞ for modes with kz ¼ 0. Several additional
reasons exist for controlling the growth of geostrophic
modes. First, columnar vortices are typically not observed
in global simulations. Instead, geostrophic modes emerge
as steady axisymmetric flows, which do not necessarily
inhibit the instability mechanism [17] (but see [20]).
Moreover, the inverse cascade shown in Fig. 1 inevitably
leads to vortices of an extent similar to the size of the box,
which is unphysical. The same issue arises in two-
dimensional turbulence, where it is solved adding large-
scale friction [49]. Lastly, additional physics, such as
imposing a background magnetic field [15,43], can also
be responsible for precluding the emergence of large-scale
geostrophic flows. The friction coefficient fr, which, in the
case of Ekman pumping, stands for the ratio L=h, is left
here as a parameter to control the relative importance of the
geostrophic modes in the saturated flow. We expect other
mechanisms of specific dissipation (see, e.g., magnetic
[15,43], quadratic, scale dependant) to lead to similar
results.
The simulations hereafter are carried out with fr ¼ 10−2

and fr ¼ 1. We now set the Ekman number E to 3 × 10−6

and the resolution to 5123. These extreme parameters could
not be reached previously since the transition from phase b
to c (see Fig. 1) was then too difficult to resolve. For
comparison, the simulations with friction corresponding to
Fig. 1 can be found in Supplemental Material [36].
As displayed in Fig. 3, both relatively strong (fr ¼ 1)

and weak (fr ¼ 10−2) selective damping of the geostrophic

(a) (b) (c)

FIG. 2. Spectral energy [normalized by ðk−1resΩÞ2] as a function of the frequency in spin units and the angle between the wave vector
and the rotation axis θ for k=ð2πÞ ∈ ½3; 20�. The three figures correspond to the three stages identified in Fig. 1. The continuous line
represents the inertial wave dispersion relation, and the dotted one highlights the resonant frequency γ=Ω ¼ 1.5.
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modes leads to significant reduction of the geostrophic
energy, but it does not affect the total energy, which remains
similar to what was obtained previously in the early
saturation phase (denoted as b in Fig. 1). Moreover, the
energy is maintained throughout the simulation. The kinetic
energy of the flow is now sharply located around the
dispersion relation, not only at the resonance frequency, but
at many frequencies consistent with the dispersion relation
of inertial waves. Other mirroring locations of the energy
can be noticed (see dashed line in Fig. 3); they are
understood as nonresonant interactions between the waves
and the base flow with frequencies −2 cos θ þ 2γ=Ω.
Energy focusing along the dispersion relation was observed
in [31], but in their case, energy was injected randomly into
the system. In our case, all the waves excited at frequencies
different from the resonant frequency must be produced by
nonlinear resonant interactions; hence, energy focusing
around the dispersion relation provides strong evidence to
support the existence of inertial wave turbulence driven by
elliptical instability.
We further investigate the creation of small scales when

the geostrophic modes are subdominant by plotting the
Rossby number as a function of the wave number k,
computed as RoðkÞ ¼ kEðkÞ1=2=Ω, EðkÞ being the iso-
tropic energy spectrum. This is displayed in Fig. 4 and

suggests that for asympotically low Ekman numbers, RoðkÞ
is constant and less than unity beyond the resonant scale.
Hence, nonlinear interactions are weak, and rotation affects
all scales; this result is completely different from the Zeman
phenomenology of forced rotating turbulence [30], accord-
ing to which, isotropic Kolmogorov-like turbulence should
be recovered at small scales, but is consistent with the
phenomenological approach of Zhou predicting a k−2 for
the kinetic energy spectrum [50].
To conclude, our results not only clarify the various

saturation regimes of the elliptical instability observed in
experiments and numerical simulations, but they also
provide a new approach to disentangle wave and vortices
in any situation involving rotating turbulence. Depending
on the relative importance of the geostrophic flows, one can
observe intermittent behavior or quasistationary states close
to inertial wave turbulence, provided that the input Rossby
number (or equivalently β) is low enough. As shown here,
the fundamental quantity to be considered is, therefore, the
ratio between geostrophic flows and 3D modes, which
depends on the specifics of the considered system and has
been mostly neglected when comparing different rotating
turbulence configurations. In previous experiments and
simulations in spherical or ellipsoidal geometries, the
geostrophic modes resulting from the nonlinear interactions

FIG. 3. Left: contributions to the kinetic energy of the flow for two different values of the friction parameter, with E ¼ 3 × 10−6 and
5123 resolution. Right: corresponding spectral energies processed over the saturated phase. For fr ¼ 1, the dashed line gives the location
of secondary nonresonant interactions of the wave with the base flow −2 cos θ þ 2γ=Ω. The dotted horizontal lines locate the resonance
frequency γ=Ω.

FIG. 4. Left: scale dependence of Rossby number for β ¼ 5 × 10−2 and fr ¼ 1 for E ¼ 10−5, 3 × 10−6, 10−6; results from the
geostrophic saturation [Fig. 1(c)] are shown for comparison. Center: vertical vorticity in the E ¼ 10−6 case. Right: schematic diagram
illustrating where the geostrophic and wave turbulence regimes can be expected, depending on β and E. WT and G stand for wave
turbulence and geostrophic types of saturation, respectively.
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of inertial waves manifest themselves as zonal flows, i.e.,
mean steady axisymmetric flows pervading the fluid
interior [16,17,51–53] (see [54], however). Their ampli-
tudes tend to be proportional to β2E−α, with α ranging from
0 to 2 [52,55,56], depending on the excitation frequency.
Since the amplitude of the rms velocity scales like β
[19,53], the ratio of the geostrophic zonal flows to the
3D modes is, therefore, proportional to βE−α. As the
elliptical instability grows, provided β > E1=2 [5], we
conclude that for α < 1=2, there exists a regime where
inertial wave turbulence is expected at low β and E—see
right panel of Fig. 4. Inertial wave turbulence can, there-
fore, be expected in planetary cores and more generally, in
rotating turbulent flows. This new turbulence regime has to
be studied in detail in order to understand both dynamos
[57,58] and dissipation driven by the elliptical instability. In
the general framework of rotating fluid turbulence, our
study indicates that mechanisms controlling the growth of
geostrophic modes completely determine the nature of
turbulence between quasi-two-dimensional and wave
turbulence.
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