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Abstract Mass mortality events have led to a collapse of the sponge fauna of Lake Baikal. We 

describe a new Brown Rot Syndrome affecting the endemic species Lubomirskia baicalensis. The 

main symptoms are the appearance of brown patches at the sponge surface, necrosis, and 

cyanobacterial fouling. 16S rRNA gene sequencing was used to characterize the bacterial community 

of healthy versus diseased sponges, in order to identify putative pathogens. The relative abundance 

of 89 eubacterial OTUs out of 340 detected has significantly changed between healthy and diseased 

groups. This can be explained by the depletion of host-specific prokaryotes and by the appearance 

and proliferation of disease-specific OTUs. In diseased sponges, the most represented OTUs belong 

to the families Oscillatoriaceae, Cytophagaceae, Flavobacteriaceae, Chitinophagaceae, 

Sphingobacteriaceae, Burkholderiaceae, Rhodobacteraceae, Comamonadaceae, Oxalobacteraceae, 

and Xanthomonadaceae. Although these families may contain pathogenic agents, the primary 

causes of changes in the sponge bacterial community and their relationship with Brown Rot 

Syndrome remain unclear. A better understanding of this ecological crisis will thus require a more 

integrative approach. 

Keywords Disease outbreak, Mass mortality, Porifera, Brown Rot Syndrome, Opportunistic 
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Introduction 

Sponges (Porifera) are ancient Metazoa inhabiting marine and freshwater environments. They have 

a wide array of functional roles which make them keystone components of benthic-pelagic 

couplings, filtering ambient water, feeding on picoplanktonic and nanoplanktonic preys together 

with suspended detritus, and thus recycling organic matter into mineral material. They may also 

contribute to primary production and excrete secondary metabolites, thus acting on complex and 

poorly known networks of biotic interactions [1–4]. Sponges can host a huge diversity of symbiotic 

microorganisms, including viruses, archaea, eubacteria, fungi, and protista [5]. In high microbial 

abundance (HMA) species, microorganisms can represent up to 40% of the sponge biomass [6] and 

show great taxonomic diversity, with up to 47 bacterial or candidate phyla recorded so far [7–9]. 

Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Proteobacteria 

(Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria), 

Verrucomicrobia, and Nitrospira phyla are the most common both in marine [4, 10] and freshwater 

sponges [11–14]. Sponge disease outbreaks or mass mortality events have been reported for more 

than a century, with more than 20 events studied, sometimes affecting several species and large 

areas [4, 15–28]. However, reports and investigations on the conditions of freshwater sponge 



disease outbreaks are rare. The most commonly observed symptoms are bleaching, necrosis, and 

the development of filamentous cyanobacteria overgrowing the sponge surface. Such diseases are 

widely distributed in the Caribbean region, the Great Barrier Reef, the Indo-Pacific, and the 

Mediterranean [4, 29], and in some cases, they have severely affected population densities [30–38]. 

The causal relationships are poorly known. Global warming and extreme thermal events are 

considered to be the most important environmental contexts favoring the emergence of pathogens 

or the expression of their virulence [33, 36, 37]. Infectious agents have often been considered to be 

the main factors triggering mass mortalities [15, 16, 18, 38, 39], although the pathogens responsible 

have rarely been identified. Several studies have hypothesized on the putative role of viruses, fungi, 

cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, and 

Bacteroidetes [16, 19, 34, 40–47]. However, there is only one case in which the fulfillment of Koch’s 

Postulate has enabled the identification of a new Alphaproteobacteria, Pseudoalteromonas 

agarivorans, as the pathogen behind the disease of Rhopaloeides odorabile [38, 48]. 

Freshwater sponges (order Spongillida) include both cosmopolitan species living in lakes and rivers 

and endemic species. Compared to other freshwater systems, Lake Baikal harbors a highly diverse 

and abundant sponge fauna which be-longs to two families, Spongillidae with 5 species and 

Lubomirskiidae with 13 valid species to date [49]. In the lake, species diversity varies with depth, 

light, and availability of solid (stone, rock) substrates. Most Baikal sponges host eukaryotic 

photosymbionts which may favor their high occur-rence in the photic zone [49, 50]. Lubomirskia 

baicalensis (Pallas, 1771) is the most common and emblematic sponge species of Lake Baikal [49]. 

This endemic species presents variable growth morphologies, and its branching forms—which 

measure up to 1.5 m high—shape the underwater scape, in particular between 10- and 20-m depths 

where their maximal biomass has been recorded [50, 51]. The first observations of a disease-like 

syndrome in L. baicalensis sponges were recorded in Central Baikal in 2010 (Khanaev, personal video 

records) and in 2011 [52]. Over the past 6 years, diseased sponges have been found along the near-

shore zone from South to North Baikal. The most obvious signs of dis-ease are sponge surfaces 

covered with reddish colored filamentous cyanobacteria, oscule deformation [53], and bleaching 

[54]. This disease outbreak developed into a sponge mass mortality in 2013. The most visible effects 

concerned the branching forms of L. baicalensis with, in this case, a disease occurrence affecting 

between 30 and 100% in the Southern Basin of Lake Baikal [55]. 

This study focuses on individuals of L. baicalensis presenting the same syndrome of dark brown 

necrotic patches. Sponge-associated bacterial communities were studied using deep sequencing of 

the 16S ribosomal RNA gene in order to identify microbial taxa associated with diseased sponges, 

and thus provide initial clues about the mechanisms behind the outbreak. 

Materials and Methods 

Sponge and Water Sampling 

Healthy and diseased individuals (Fig. 1) of L. baicalensis were collected by scuba diving during a field 

trip conducted in May–June 2015. 

Sponges were collected at three sites along the littoral zone of Lake Baikal: 51° 51′ 46″ N, 104° 50′ 

51″ E(site L); 53° 01′ 03″ N, 106° 55′ 47″ E (site OV); 55° 17′ 16″ N, 109° 45′ 31″ E (site T) (Fig.2). The 

population of sponges at these sites was well represented by L. baicalensis. Sponge samples were 



divided into healthy (n =11) and diseased (n = 11) groups, based on absence or presence of dark 

brown patches (Table 1). Samples were obtained from individual sponges, with the exception of 

samples T1H and T5D, which consisted of healthy and diseased parts of the same individual. Pieces 

of sponges, measuring 4–8 cm long, were collected by divers, placed in 50-mL tubes filled with 

sterile water, lifted to the ship, and gently washed three times with sterile water. Each sample was 

photographed, divided into pieces, and frozen at − 20 °C before DNA extraction. Extraction of DNA 

was performed within 2 months following the expedition. Additionally, pieces of samples were 

stored in 70% ethanol at room temperature for morphology identification. Sponge species were 

identified based on morphological characteristics of skeletons and spicules, according to the 

guidelines of Rezvoi [56] and Efremova [15]. 

Ambient water samples (200 mL per site) were collected and filtered through a sterile filter (Minisart 

NML, Sartorius) with a 0.22-μm pore size. Filters were stored at − 20 °C before DNA extraction. 

Extracts of DNA from each filter from different locations were mixed in one sample in order to 

optimize our chances of obtaining good amplification. According to Mikhailov et al. [57], at this 

season, the bacterioplankton composition is rather homogenous across the three different basins of 

Lake Baikal. 

Chemical Water Analysis 

Water samples (1.5 L) were collected in each site at 5–15-and 15–30-m depths, to measure pH, 

temperature, nutrients, and dissolved oxygen using standard methods described in Semenov [58], 

Stroganov and Buzinova [59], and Wetzel and Likens [60]. Results were compared to reference 

values obtained after long-term monitoring in Lake Baikal [61–64]. 

454 Pyrosequencing of Bacterial 16S rRNA Genes 

The genomic DNA was extracted from 30 to 50 mg of sponge tissue and water filters using TRIzol LS 

reagent, following the manufacturer’s instructions (Invitrogen, Ambion, USA). In total, 22 sponge 

samples and one water sample were used for 454 sequencing. 

For each sample, the hypervariable region V4–V6 of the 16S rRNA gene was amplified by PCR with 

bacterial primers 518F and 1064R [65], incorporated into the for-ward primer A (Lib-L) with sample-

specific MIDs at the 5` end and reverse primer B, respectively, as described in the Guidelines for 

Amplicon Experimental Design (April 2014) for the GS FLX Titanium 454 Sequencing System. The 

three replicates of the 15-μL PCR mixture contained 1× Tersus buffer, 1× high-fidelity polymerase 

Tersus, 2.5 M Mg2+, 0.2 mM of each dNTP (Tersus PCR kit, Evrogen, Russia), 10 pmol of forward and 

reverse primers, and 50 ng DNA. Negative (no template) controls were used in the PCR with each 

MID. The PCR conditions included an initial denaturation step at 96 °C for 3 min; 30 cycles of 94 °C 

for 20 s, 55 °C for 20 s, and 72 °C for 1 min; and a final extension at 72 °C for 5 min, using a DNA 

Engine Dyad Thermal Cycler (MJ Research, USA). Products from triplicate PCR reactions were com-

bined, and 25 μL of the mix was cleaned to remove products smaller than 300 bp, using a SeqCap 

Pure Capture Bead Kit (Roche). The DNA pool was diluted in 10 mM Tris-EDTA to a final 

concentration of 1 × 106 molecules/μL, and one molecule per bead was used in emulsion PCR. 

Amplicons were unidirectionally sequenced (two runs for all samples) using a Roche Genome 

Sequencer, the GS Junior System. The GS Run Browser 3.0 (Roche) was used for primary data 



processing, and the script Extended MIDConfig.parse (Roche) was used for automated sorting of 

MID-containing reads. The number of reads was normalized to 4500 reads per sample. Sequences 

were trimmed, quality-controlled, and aligned using Mothur [66]. Pipeline and SeqClean software 

image processing and signal calling were performed using the Roche amplicon-processing pipeline 

(version 2.53) with a recursive phase correction algorithm to maximize the number of long reads. 

The ChimeraSlayer algorithm [67] inside a Mothur package was used to eliminate chimeras, and 

singletons were discarded. The Silva database [68], with the alignment, taxonomy, and operational 

taxonomic units (OTUs) assigned according to Greengenes repository [69], was used as a template 

for annotation of input sequences. Grouping of input data with ≥ 97% identity threshold was 

implemented by a greedy complete-linkage clustering following the recommendations of He et al. 

[70]. Unclassified reads and chloroplast sequences were removed from downstream analysis. The 

percentage values of sequence reads in groups of healthy and dis-eased sponges were used to 

analyze differences between sponge-associated bacterial communities. Nucleotide sequences were 

submitted to the NCBI Sequence Read Archive SRP073411. 

Statistical Analysis 

The Shannon biodiversity index and species richness estimates Chao1 and ACE were calculated from 

canonical formulas, as documented in the Mothur manual [66]. The principal component analysis 

and the Mann-Whitney test were per-formed using XLSTAT 2016. Between-group comparisons of 

bacteria prevalence in healthy and diseased L. baicalensis sponges (at 97% of homology) were 

calculated using the U-criterion of the two-tailed Mann-Whitney test; values of p < 

0.05wereconsideredassignificant.Actualp values can be found in Supplementary S1. Standard 

deviation of the mean was used for data presentation. 

Results 

Disease Occurrence 

Diseased L. baicalensis were found at all sampling sites between 3 and 30 m. Dark brown patches 

were the most common external signs that we thereafter defined as Brown Rot Syndrome (BRS). 

Bleaching sponges were found only occasionally. Patches could cover parts of the sponge surface or 

entire individuals. They usually led to necrosis, collapse of the tissue, and death. Filamentous 

cyanobacteria covered the affected branches, giving them a brownish-pink color. The incidence 

disease on sponge populations was variable between sites, from a few scattered diseased individuals 

(site T) to extensive areas with dozens of decaying sponges (sites L and OV). 

Chemical Water Analysis 

The obtained data on temperature, pH, and concentrations of biogenic elements generally 

corresponded to average back-ground values [62, 64], the exception being a drop in pH and an 

increase in N and P concentrations in the water layer near the bottom at site L (Table 2). 

16S Taxonomic Richness and Bacterial Composition in Healthy and Diseased Sponges 

The total number of reads of 16S rRNA gene was 125,560. The average sequence length of filtered 

reads was 524 ± 14 nucleotides. The Shannon diversity index was 2.5 ± 0.6 for the healthy sponge 

group and 3.5 ± 0.4 for the diseased sponge group (mean ± SD). Diversity indices for each sample are 



given in Table 3. A total of 340 OTUs was detected among our sponge samples (Supplementary file 

S2). Rarefaction curves for each sample indicated that the major part of the sequence diversity was 

identified (Supplementary file S3). However, deeper sequencing would certainly allow to recover 

more minor OTUs. The PCA analysis on the relative OTU abundance based on the Pearson 

correlation matrix clearly separates the two groups: diseased and healthy sponges with samples of 

healthy tissue taken from diseased individuals grouped with healthy sponges (Fig. 3). In healthy 

sponges, the bacterial community appeared to be composed by 19 phyla: Crenarchaeota, 

Acidobacteria, Actinobacteria, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, 

Deinococcus-Thermus, Elusimicrobia, Firmicutes, Gemmatimonadetes, Lentisphaerae, Nitrospira, 

Planctomycetes, Fibrobacteres, Proteobacteria (Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Deltaproteobacteria, Epsilonbacteria), Spirochaetes, Verrucomicrobia, and 

five candidate phyla BD 1–5, OD1, OP10, TM6, and WCHB1–60. Two additional candidate phyla, 

SM2F11 and SR1, were found in diseased sponges. The most abundant bacterial phyla were 

Bacteroidetes and Proteobacteria and, to a lesser extent, Actinobacteria, Cyanobacteria, 

Planctomycetes, and Verrucomicrobia. The microbial community of the water sample differed from 

that obtained from sponge samples and was dominated by Actinobacteria (Fig. 4). 

Significant changes were detected in the composition of the bacterial community of diseased 

sponges. Some taxa showing more than 5-fold increases in abundance belonged to Cyanobacteria, 

Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. At the family 

level, members of Oscillatoriaceae, Cytophagaceae, Flavobacteriaceae, Chitinophagaceae, 

Sphingobacteriaceae, Burkholderiaceae, Rhodobacteraceae, Comamonadaceae, Oxalo bacteraceae 

Xanthomonadaceae, and Verrucomicrobiaceae were over-represented in diseased sponges. At the 

genus level, 19 genera and unclassified taxa were more abundant in diseased sponges (Fig. 5). In 

addition, other genera such as Cytophaga, Phormidium, Bosea, Pseudorhodobacter, Luteolibacter, 

and Prosthecobacter were recorded in low quantity (< 0.9%), but only in diseased sponges. 

At the lowest taxonomic level (97% similarity), significant quantitative changes between groups of 

healthy and diseased sponges were highlighted by 89 bacterial OTUs (Supplementary Table S1). 

Among the changes detected at this level, the relative read abundance increased for 64 OTUs, 

whereas it decreased for 25 OTUs. In each genus, increased abundance was found in one-to-two 

closely related OTUs (96–96.9%) dominating bacterial communities of diseased sponges, and was 

actually absent—or found only in trace amounts—in healthy sponges or water samples. 

Oscillatoriales cyanobacteria (Subsection III) are the most increased OTUs in diseased sponges. In 

particular, the abundance of the genera Chamaesiphon and Limnothrix and of an unclassified group 

increased by 5% in diseased sponges, whereas they accounted for only 0–0.1% of bacterial 

communities in healthy samples, and were totally absent in the water sample. Several other 

cyanobacterial OTUs belonging to gen-era Leptolyngbya and Phormidium also prevailed in the 

diseased sponge group. (Sediminibacterium, Fabibacter), candidate division OD1, Planctomycetes 

(CL500-3), Alphaproteobacteria (LD12), Betaproteobacteria (LD28, OM43, Polynucleobacter, 

Limnohabitans), Deltaproteobacteria (Bacteriovorax), and Verrucomicrobia (vadinH A64, Candidatus 

Methylacidiphilum). 

 

 



Discussion 

The results of chemical analysis showed that water parameters were in the range of the reference 

values; however, in site L some changes were detected in terms of pH and nutrient concentrations. 

In particular, a drop in pH from 7.9 to 7.2, along with increased concentrations of nitrate (1.4-fold), 

phosphate (1.5-fold), ammonium (from 0.005 to 0.56 mg/L), and nitrite ions (from 0.002 to 0.05 

mg/L), was detected in the water sampled near the bottom. At this site, the sponge disease 

appeared concomitantly with a green algae bloom described by Kravtsova et al. [71, 72] and 

attributed to a local eutrophication. The relationship between the sponge BRS and this 

eutrophication event is unclear; however, the green algae proliferation significantly affected the 

sponge environment, the substrate and light availability, and the water quality, and thus likely 

disturbed sponge filter-feeding, growth, and reproduction ability. 

The analysis of 16S rRNA gene of the bacterial community associated with sponges highlighted a 

more diverse microbial community in healthy L. baicalensis than in previously studied specimens [13, 

14]. This might be explained by differences in sample preparation and amplification strategy. Under 

reference condition, the L. baicalensis bacterial com-munity includes Crenarchaeota and 23 

Eubacteria phyla and candidate phyla. The major bacterial phyla are Bacteroidetes, Proteobacteria, 

Actinobacteria, Verrucomicrobia, and Planctomycetes, which also dominate bacterial communities 

of other freshwater sponges such as Ephydatia fluviatilis [12], Eunapius carteri, and Corvospongilla 

lapidosa [73]. Moreover, Cyanobacteria and OD1 candidate phylum seem to be also very common in 

L. baicalensis. 

Significant changes in composition of the bacterial com-munity were detected in sponges with BRS. 

Species diversity appeared higher in the diseased sponge group, which seems to be a recurrent 

observation in marine sponges [22, 40, 74]and corals [75]. This higher diversity is likely due to the 

emergence of new opportunistic species benefiting from sponge loss of health and resulting tissue 

degradation. However, the change detected in the bacterial community of diseased sponges can also 

be explained by the depletion of several OTUs which are common in healthy specimens. 

Previous studies have shown that uncultured Oscillatoriales are often associated with marine sponge 

and coral diseases [21, 26, 40, 76], these cyanobacteria being high-ly represented in diseased L. 

baicalensis. Some detailed investigations revealed several putative pathogens within this order. 

Species of the Hormoscilla genus were involved in mangrove sponge disease (MSD) [48] and 

detected in necrosis of Callyspongia (Euplacella) aff. biru [40]. The filament-forming Limnothrix, 

Plectonema, and Leptolyngbya were detected in sponge orange band disease [26]. The red-

pigmented Leptolyngbya spp. appeared on lesions of the Aplysina red band syndrome [77], and 

some unclassified Oscillatoriales were also found forming a white veil on three dictyoceratid sponges 

[49]. The results obtained in this study show that Oscillatoriales are important components of a 

complex assemblage of opportunistic bacteria and can be used as a marker for BRS. However, a 

significant increase of their abundance is not necessarily equivalent to a demonstration of their 

precise role as a primary pathogenic agent. Further studies are thus required to prove their 

pathogenic function. 

Cyanobacteria predominance has already been observed in bleached and diseased Baikal sponges 

[54, 78]. In these recent studies, Synechococcus spp. were shown to be highly abundant (> 80%) in 

diseased sponges. This contrasts with our findings which reveal that Synechococcus OTU (98–99% 



similarity with S. rubescens AM709629 and Synechococcus sp. from bleached Baikal sponge 

JQ272733)—which is also common in lake water—was considerably less represented both in BRS 

(0.3%) and in healthy sponges (1.7%) (no significant difference was observed between the two 

sponge categories, p =0.22; U = 79.00). However, the earlier reports listed above were based on the 

analysis of a single sponge individual, using clone library sequencing [54], so it is rather hard to 

believe that their findings accurately reflect the existing high variability between disease symptoms 

across Lake Baikal sites, sea-sons, and years. 

Analysis of nucleotide similarity in sequences that were substantially detected in diseased sponges 

revealed a variety of aerobic and anaerobic bacteria belonging to the families Rhodobacteraceae 

(e.g., 99% EU641680, EU376256), Sphingomonadaceae (98% KC157048), Burkholderiaceae (99% 

AB826334), Comamonadaceae (99% GU454909, KX771629), Nitrosomonadaceae (98% HQ595214), 

Xanthomonadaceae (99% EU64 068 2), and Verrucomicrobiaceae (98% AJ401106), which are known 

to be involved in the biodegradation of a wide range of carbohydrates and biopolymers [79–83]. 

Among them, some Rhodobacteraceae may be associated with sponge and coral diseases [4, 40, 42, 

84]. Moreover, genera such as Flavobacterium (96% NR_112662), Flexibacter (80%KP997194) and 

Acidovorax (96% KF769125), which are known to be fish or plant pathogens [85–88], were recorded 

in abundance in diseased L. baicalensis.  

All observed changes in the microbial community of diseased sponges have been attributed to three 

main observations: proliferation of common OTUs (12%), depletion of species-specific OTUs (7% of 

the bacterial community), and appearance of new OTUs (7%) that may be acquired from ambient 

water or present in minimal quantities. 

Thus, the change in the bacterial community which has been detected in diseased L. baicalensis is 

undoubtedly much more complex than a simple case of emerging pathogens. Indeed, it appears to 

include a high number of opportunistic and proliferating bacterial species, some of which likely be-

come pathogenic, leading to disease progression when they proliferate in the sponge body. The 

results of this study have allowed to detect the consequences of events that lead to changes in the 

sponge-associated bacterial community and the progression of BRS. The initial cause of BRS and of 

these changes in the bacterial community remains unclear, and a better understanding of the 

process will require greater inter-disciplinary as well as an integrative approach to detect the triggers 

of disease outbreak in Baikal sponges. 
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Legends 

Figures  

Fig. 1 a Healthy sponge Lubomirskia baicalensis are often inhabited by crustacean Brandtia 

parasitica. b Sponge with signs of Brown Rot Syndrome 

Fig. 2 Location of sampling sites in Lake Baikal 

Fig. 3 Principal component analysis (PCA) based on Pearson correlation matrix of relative OTU 

abundance shows differences in bacterial communities. Sponge-associated bacterial communities of 

BRS and healthy sponges are clearly separated 

Fig. 4 Composition of major eubacterial taxa in L. baicalensis and lake water assessed using 16S rRNA 

gene pyrosequencing. Relative abundances of taxa are expressed in percentage of total 16S rRNA 

gene reads. Bacteroidetes and Proteobacteria prevail in sponge-associated bacterial communities of 

healthy and BRS sponges whereas Actinobacteria dominate in the water sample. Sampling sites L, 

OV, and T; Healthy sponges H; Brown Rot Syndrome sponges BRS; Unaffected area of BRS sponge 

H*. The group “other” includes taxa that account for less than 1% of reads 

Fig. 5 The most abundant bacterial taxa identified in BRS sponges. The mean values of relative 

abundance of 16S rRNA gene reads in OTUs were found significantly higher in the group of diseased 

sponges in comparison with the group of healthy sponges 

 

Tables 

Table 1 Sponge samples 

Table 2 The water chemical properties in sampling sites 

Table 3 Richness and diversity indices of the sponge-associated bacterial communities obtained from 

16S rRNA gene pyrosequencing 
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