I. Shih, The role of CD146 (Mel-CAM) in biology and pathology, The Journal of Pathology, vol.111, issue.1, pp.4-11, 1999.
DOI : 10.1016/0046-8177(91)90173-M

C. Sers, K. Kirsch, U. Rothbächer, G. Riethmüller, and J. Johnson, Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8514-8522, 1993.
DOI : 10.1073/pnas.90.18.8514

J. Lehmann, G. Riethmüller, and J. Johnson, MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily., Proceedings of the National Academy of Sciences, vol.86, issue.24, pp.9891-9896, 1989.
DOI : 10.1073/pnas.86.24.9891

A. Maitra, D. Hansel, P. Argani, R. Ashfaq, A. Rahman et al., Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays, Clin Cancer Res, vol.9, pp.5988-95, 2003.

K. Ueno, H. Hirata, S. Majid, Z. Tabatabai, Y. Hinoda et al., IGFBP-4 activates the Wnt/beta-catenin signaling pathway and induces M-CAM expression in human renal cell carcinoma, International Journal of Cancer, vol.122, issue.10, pp.2360-2369, 2011.
DOI : 10.1309/G7PY0RE7T86HHQYV

G. Wu, P. Fu, C. Chiang, W. Huss, N. Greenberg et al., INCREASED EXPRESSION OF MUC18 CORRELATES WITH THE METASTATIC PROGRESSION OF MOUSE PROSTATE ADENOCARCINOMA IN THE TRAMP MODEL, The Journal of Urology, vol.173, issue.5, pp.1778-83, 2005.
DOI : 10.1097/01.ju.0000154643.30048.2c

G. Zeng, S. Cai, and G. Wu, Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells, BMC Cancer, vol.14, issue.42, pp.1471-2407, 2011.
DOI : 10.1038/sj.gt.3302864

Z. Wang and X. Yan, CD146, a multi-functional molecule beyond adhesion, Cancer Letters, vol.330, issue.2, pp.150-62, 2013.
DOI : 10.1016/j.canlet.2012.11.049

A. Imbert, C. Garulli, E. Choquet, M. Koubi, M. Aurrand-lions et al., CD146 Expression in Human Breast Cancer Cell Lines Induces Phenotypic and Functional Changes Observed in Epithelial to Mesenchymal Transition, PLoS ONE, vol.7, issue.8, p.43752, 2012.
DOI : 10.1371/journal.pone.0043752.s003

S. Tripathi, J. Fahrmann, M. Celiktas, M. Aguilar, K. Marini et al., MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway, Cancer Research, vol.77, issue.16, pp.4414-4425, 2017.
DOI : 10.1158/0008-5472.CAN-16-2874

Y. Liang, D. Zeng, Y. Xiao, Y. Wu, Y. Ouyang et al., MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial???mesenchymal transition, decreased ER?? expression and AKT activation, Cancer Letters, vol.386, pp.65-76, 2017.
DOI : 10.1016/j.canlet.2016.11.004

N. Bardin, F. Anfosso, J. Massé, E. Cramer, F. Sabatier et al., Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion, Blood, vol.98, issue.13, pp.3677-84, 2001.
DOI : 10.1182/blood.V98.13.3677

N. Espagnolle, F. Guilloton, F. Deschaseaux, M. Gadelorge, L. Sensébé et al., CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment, Journal of Cellular and Molecular Medicine, vol.15, issue.1, pp.104-118, 2014.
DOI : 10.1182/blood-2012-08-451864

URL : http://onlinelibrary.wiley.com/doi/10.1111/jcmm.12168/pdf

C. Maier, B. Shepherd, T. Yi, and J. Pober, Explant outgrowth, propagation and characterization of human pericytes. Microcirculation, pp.367-80, 1994.

N. Bardin, M. Blot-chabaud, N. Despoix, A. Kebir, K. Harhouri et al., CD146 and its Soluble Form Regulate Monocyte Transendothelial Migration, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.5, pp.746-53, 2009.
DOI : 10.1161/ATVBAHA.108.183251

URL : https://hal.archives-ouvertes.fr/hal-00428932

E. Boja and H. Rodriguez, Proteogenomic convergence for understanding cancer pathways and networks, Clinical Proteomics, vol.11, issue.1, p.22, 2014.
DOI : 10.1186/1471-2105-7-109

URL : https://clinicalproteomicsjournal.biomedcentral.com/track/pdf/10.1186/1559-0275-11-22?site=clinicalproteomicsjournal.biomedcentral.com

G. Wu, V. Varma, M. Wu, S. Wang, P. Qu et al., Expression of a human cell adhesion molecule, MUC18, in prostate cancer cell lines and tissues, The Prostate, vol.12, issue.4, pp.305-320, 2001.
DOI : 10.1038/sj.leu.2400922

G. Jiang, L. Zhang, Q. Zhu, D. Bai, C. Zhang et al., CD146 promotes metastasis and predicts poor prognosis of hepatocellular carcinoma, Journal of Experimental & Clinical Cancer Research, vol.87, issue.6, p.38, 2016.
DOI : 10.1002/cyto.a.22782

URL : http://doi.org/10.1186/s13046-016-0313-3

G. Zabouo, A. Imbert, J. Jacquemier, P. Finetti, T. Moreau et al., CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines, Breast Cancer Research, vol.178, issue.1, p.1, 2009.
DOI : 10.1084/jem.178.3.1057

W. Liu, S. Ji, J. Sun, Y. Zhang, Z. Liu et al., CD146 Expression Correlates with Epithelial-Mesenchymal Transition Markers and a Poor Prognosis in Gastric Cancer, International Journal of Molecular Sciences, vol.43, issue.5, pp.6399-406, 2012.
DOI : 10.1016/j.humpath.2011.07.003

M. Ilie, E. Long, V. Hofman, E. Selva, C. Bonnetaud et al., Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer, British Journal of Cancer, vol.100, issue.5, pp.1236-1279, 2014.
DOI : 10.1073/pnas.1111053108

W. Pickl, O. Majdic, G. Fischer, P. Petzelbauer, I. Faé et al., MUC18/MCAM (CD146), an activation antigen of human T lymphocytes, J ImmunolBaltimMd, vol.158, pp.2107-2122, 1950.

A. Kebir, K. Harhouri, B. Guillet, J. Liu, A. Foucault-bertaud et al., CD146 Short Isoform Increases the Proangiogenic Potential of Endothelial Progenitor Cells In Vitro and In Vivo, Circulation Research, vol.107, issue.1, pp.66-75, 2010.
DOI : 10.1161/CIRCRESAHA.109.213827

H. Duan, S. Xing, Y. Luo, L. Feng, I. Gramaglia et al., Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the CNS, Scientific Reports, vol.8, issue.6, p.1687, 2013.
DOI : 10.1186/1742-2094-8-102

F. Dignat-george and C. Boulanger, The Many Faces of Endothelial Microparticles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, pp.27-33, 2011.
DOI : 10.1161/ATVBAHA.110.218123

P. Souza, R. Faccion, P. Bernardo, and R. Maia, Membrane microparticles: shedding new light into cancer cell communication, Journal of Cancer Research and Clinical Oncology, vol.14, issue.3, pp.1395-406, 2016.
DOI : 10.1016/j.semcancer.2003.10.004

L. Mills, C. Tellez, S. Huang, C. Baker, M. Mccarty et al., Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma, Cancer Res, vol.62, pp.5106-5120, 2002.

Y. Lin, X. Wu, Y. Shen, P. Bu, D. Yang et al., A novel antibody AA98 V(H)/L directed against CD146 efficiently inhibits angiogenesis, Anticancer Res, vol.27, pp.4219-4243, 2007.

J. Stalin, M. Nollet, P. Garigue, S. Fernandez, L. Vivancos et al., Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors, Oncogene, vol.102, issue.42, pp.5489-500, 2016.
DOI : 10.1182/blood-2002-04-1004

URL : https://hal.archives-ouvertes.fr/hal-01456904

A. Eisenberg-lerner, A. Ciechanover, and Y. Merbl, Post-translational modification profiling ??? A novel tool for mapping the protein modification landscape in cancer, Experimental Biology and Medicine, vol.289, issue.14, pp.1475-82, 2016.
DOI : 10.18632/oncotarget.6658

P. Bu, J. Zhuang, J. Feng, D. Yang, X. Shen et al., Visualization of CD146 dimerization and its regulation in living cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.4, pp.513-533, 2007.
DOI : 10.1016/j.bbamcr.2007.01.009

A. Singnurkar, R. Poon, and U. Metser, Comparison of 18F-FDG-PET/CT and 18F-FDG-PET/MR imaging in oncology: a systematic review, Annals of Nuclear Medicine, vol.40, issue.5, pp.366-78, 2017.
DOI : 10.1007/s00261-015-0474-0

T. Welz, J. Wellbourne-wood, and E. Kerkhoff, Orchestration of cell surface proteins by Rab11, Trends in Cell Biology, vol.24, issue.7, pp.407-422, 2014.
DOI : 10.1016/j.tcb.2014.02.004

C. Hermann, C. Schmidt, B. Peschel, C. Bernhard, and H. , Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells, Cancer Res, vol.62, pp.2244-2251, 2002.

Y. Kang, F. Wang, J. Feng, D. Yang, X. Yang et al., Knockdown of CD146 reduces the migration and proliferation of human endothelial cells, Cell Research, vol.99, issue.3, pp.313-321, 2006.
DOI : 10.1172/JCI119168

S. Govindan and D. Goldenberg, New Antibody Conjugates in Cancer Therapy, The Scientific World JOURNAL, vol.10, pp.2070-89, 2010.
DOI : 10.1100/tsw.2010.191

URL : https://doi.org/10.1100/tsw.2010.191

S. Robert, R. Lacroix, P. Poncelet, K. Harhouri, T. Bouriche et al., High-Sensitivity Flow Cytometry Provides Access to Standardized Measurement of Small-Size Microparticles--Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.4, pp.1054-1062, 2012.
DOI : 10.1161/ATVBAHA.111.244616