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Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon Physiology. 
Axons are generally considered as reliable transmission cables in which stable propagation occurs once an 
action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired 
neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the 
functional and computational repertoire of the axon is much richer than traditionally thought. Beyond 
classical axonal propagation, intrinsic voltage-gated ionic currents together with the geomet-rical properties of 
the axon determine several complex operations that not only control signal processing in brain circuits but 
also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal 
computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how 
neuronal activity regulates both axon morphology and axonal function on a long-term time scale during 
development and adulthood.



I. INTRODUCTION

The axon (from Greek �´���, axis) is defined as a
long neuronal process that ensures the conduction of
information from the cell body to the nerve terminal. Its
discovery during the 19th century is generally credited to
the German anatomist Otto Friedrich Karl Deiters (147),
who first distinguished the axon from the dendrites. But
the axon initial segment was originally identified by the
Swiss Rüdolf Albert von Kölliker (293) and the German
Robert Remak (439) (for a detailed historical review, see
Ref. 480). The myelin of axons was discovered by Rudolf
Virchow (548), and Louis-Antoine Ranvier (433) first char-
acterized the nodes or gaps that now bear his name. The
functional role of the axon as the output structure of the
neuron was initially proposed by the Spanish anatomist
Santiago Ramón y Cajal (429, 430).

Two distinct types of axons occur in the peripheral
and central nervous system (PNS and CNS): unmyelinated
and myelinated axons, the latter being covered by a my-
elin sheath originating from Schwann cells in the PNS or
oligodendrocytes in the CNS (Table 1). Myelinated axons
can be considered as three compartments: an initial seg-
ment where somatic inputs summate and initiate an ac-
tion potential; a myelinated axon of variable length, which
must reliably transmit the information as trains of action
potentials; and a final segment, the preterminal axon,
beyond which the synaptic terminal expands (Fig. 1). The
initial segment of the axon is not only the region of action
potential initiation (117, 124, 514) but is also the most
reliable neuronal compartment, where full action poten-
tials can be elicited at very high firing frequencies without
attenuation (488). Bursts of spikes display minimal atten-
uation in the AIS compared with the soma (488, 561). The

main axon is involved in the secure propagation of action
potentials, but it is also able to integrate fluctuations in
membrane potential originating from the somatodendritic
region to modulate neurotransmitter release (5, 291, 489).
Finally, the axon terminal that is principally devoted to
excitation-release coupling with a high fidelity (159) is
also the subject of activity-dependent regulation that may
lead to spike broadening (209).

Generally, axons from the CNS are highly ramified
and contact several hundreds of target neurons locally or
distally. But, the function of the axon is not purely limited
to the conduction of the action potential from the site of
initiation near the cell body to the terminal. Recent ex-
perimental findings shed new light on the functional and
computational capabilities of single axons, suggesting
that several different complex operations are specifically
achieved along the axon. Axons integrate subthreshold
synaptic potentials and therefore signal both analog and
digital events. Drop of conduction or backward propaga-
tion (reflection) may occur at specific axonal branch
points under certain conditions. Axonal geometry to-
gether with the biophysical properties of voltage-gated
channels determines the timing of propagation of the
output message in different axonal branches. In addition,
axons link central neurons through gap junctions that
allow ultra-fast network synchrony. Moreover, local shap-
ing of the axonal action potential may subsequently de-
termine synaptic efficacy during repetitive stimulation.
These operations have been largely described in in vitro
preparations of brain tissue, but evidence for these pro-
cesses is still scarce in the mammalian brain in vivo. In
this paper we review the different ways in which the
properties of axons can control the transmission of elec-
trical signals. In particular, we show how the axon deter-

TABLE 1. A short list of myelinated and unmyelinated axons in mammalian CNS and PNS

CNS Neuronal Type Nomenclature/Remarks

Myelinated axons

CNS
Retina Ganglion cells Optic nerve (unmyelinated proximally)

Spinal cord Grey matter
Hippocampus CA1/CA3 pyramidal neurons Alveus/fimbria

Cortex L5 pyramidal cell Principal axon (unmyelinated collaterals)
Cerebellum Purkinje cell principal axon (unmyelinated collaterals)

PNS
Motor Motoneurons �, � (in sciatic nerve)

Sensory fibers Dorsal root ganglion cell Type Ia, Ib, II (muscle spindle and Golgi tendon organ)
Sensory fibers Dorsal root ganglion cell Type III (also known as nociceptive A� fibers)

Unmyelinated axons

CNS
Hippocampus Granule cell (dentate gyrus) Mossy fiber
Hippocampus CA3 pyramidal cell Schaffer collaterals

Cerebellar Granule cell Parallel fiber
PNS

Sensory Dorsal root ganglion cell Type IV (also known as nociceptive C-fibers)

CNS, central nervous system; PNS, peripheral nervous system.



mines efficacy and timing of synaptic transmission. We
also discuss recent evidence for long-term, activity-depen-
dent plasticity of axonal function that may involve mor-
phological rearrangements of axonal arborization, myeli-
nation, regulation of axonal channel expression, and fine
adjustment of AIS location. The cellular and molecular
biology of the axon is, however, not discussed in depth in
this review. The reader will find elsewhere recent reviews
on axon-dendrite polarity (36), axon-glia interaction (380,
381), myelin formation (40, 483), axonal transport (138,
250, 405), and the synthesis of axonal proteins (210).

II. ORGANIZATION OF THE AXON

A. Complexity of Axonal Arborization: Branch

Points and Varicosities

Axonal morphology is highly variable. Some axons
extend locally (�1 mm long for inhibitory interneurons),
whereas others may be as long as 1 m and more. The
diameter of axons varies considerably (553). The largest

axons in the mammalian PNS reach a diameter of �20 �m
[(264); but the biggest is the squid giant axon with a
diameter close to 1 mm (575)], whereas the diameter of
unmyelinated cortical axons in the mammalian brain var-
ies between 0.08 and 0.4 �m (48, 559). The complexity of
axonal arborization is also variable. In one extreme, the
cerebellar granule cell axon possesses a single T-shaped
branch point that gives rise to the parallel fibers. On the
other, many axons in the central nervous system typically
form an elaborate and most impressive tree. For instance,
the terminal arbor of thalamocortical axons in layer 4 of
the cat visual cortex contains 150–275 branch points (13).
The complexity of axonal arborization is also extensive in
cortical pyramidal neurons. Axons of hippocampal CA3
pyramidal cells display at least 100–200 branch points for
a total axonal length of 150–300 mm, and a single cell may
contact 30,000–60,000 neurons (269, 325, 347). GABAer-
gic interneurons also display complex axons. Hippocam-
pal and cortical inhibitory interneurons emit an axon with
a very dense and highly branched arborization (235). One
obvious function of axonal divergence is to allow syn-
chronous transmission to a wide population of target
neurons within a given brain area. For instance, hip-
pocampal basket cells synchronize the firing of several
hundred principal cells through their divergent axon
(118).

The second morphological feature of axons is the
presence of a large number of varicosities (synaptic bou-
tons) that are commonly distributed in an en passant,
“string of beads” manner along thin axon branches. A
single axon may contain several thousands of boutons
(235, 325, 411). Their size ranges between �1 �m for thin
unmyelinated axons (482, 559) and 3–5 �m for large hip-
pocampal mossy-fiber terminals (61, 482). Their density
varies among axons, and the spacing of varicosities is
comprised between �4 and �6 �m in unmyelinated fibers
(481, 482).

B. Voltage-Gated Ion Channels in the Axon

Voltage-gated ion channels located in assigned sub-
domains of the axonal membrane carry out action poten-
tial initiation and conduction, and synaptic transmission,
by governing the shape and amplitude of the unitary
spike, the pattern of repetitive firing, and the release of
neurotransmitters (Fig. 2). Recent reviews (310, 387, 540)
have provided a detailed account of the voltage-gated ion
channels in neurons, clearly illustrating the view that in
the axon, the specific array of these channels in the
various neuronal types adds an extra level of plasticity to
synaptic outputs.

1. Channels in the axon initial segment

A) SODIUM CHANNELS. Variations in potential arising from
somato-dendritic integration of multiple inputs culminate

FIG. 1. Summary of axonal functions. A pyramidal neuron is sche-
matized with its different compartments. Four major functions of the
axon are illustrated (i.e., spike initiation, spike propagation, excitation-
release coupling, and integration). A spike initiates in the axon initial
segment (AIS) and propagates towards the terminal where the neu-
rotransmitter is released. In addition, electrical signals generated in the
somatodendritic compartment are integrated along the axon to influence
spike duration and neurotransmitter release (green arrow).



at the axon initial segment (AIS) where a suprathreshold
resultant will trigger the action potential. This classical
view relies on the presence of a highly excitable region in
the initial segment of the axon (Fig. 3). Theoretical stud-
ies of action potential initiation have suggested that a 20-
to 1,000-fold higher density of sodium (Na�) channels in
the axon relative to that found in the soma and dendrites
is required to permit the polarity of spike initiation in the
axon of the neuron (157, 346, 373, 434). The first evidence
for concentration of Na� channels at the axon hillock and
initial segment of retinal ganglion cells was obtained with
the use of broad-spectrum Na� channel antibodies (564).
After several fruitless attempts (119, 120), functional con-
firmation of the high concentration of Na� channels in the
AIS was achieved only recently with the use of Na�

imaging (193, 290) and outside-out patch-clamp record-
ings from the soma and the axon (259). In these last
studies, the largest Na�-dependent fluorescent signals or
voltage-gated Na� currents were obtained in the AIS of
cortical pyramidal neurons (Fig. 3, A and B). Na� current
density is 34-fold greater in the AIS than in the soma
(259). This estimation has been very recently confirmed
for the Nav1.6 subunit detected in CA1 pyramidal neurons
by a highly sensitive, quantitative electron microscope
immunogold method (SDS-digested freeze-fracture repli-
ca-labeling; Ref. 333; Fig. 3C). The density of gold parti-
cles linked to Nav1.6 subunits measured by this method
(�180/�m2) is fully compatible with a previous estimate
made by Kole and co-workers (290) in the AIS of L5
neurons where the density of Na� current amounts to

2,500 pS/�m2 (i.e., �150 channels/�m2 given a 17 pS
unitary Na� channel conductance).

Three different isoforms of Na� channels, which
drive the ascending phase of the action potential, are
present at the AIS, namely, Nav1.1, Nav1.2, and Nav1.6.
Nav1.1 is dominant at the AIS of GABAergic neurons
(394), but it is also found in the AIS of retinal ganglion
cells (542) and in spinal cord motoneurons (169; see Table 2 for
details). With a few exceptions, its expression in interneu-
rons is restricted to the proximal part of the AIS and
displays little overlap with Nav1.6 that occupies the distal
part (169, 332, 394, 542). Nav1.6 and Nav1.2 are principally
associated with AIS of myelinated and unmyelinated ax-
ons, respectively, with Nav1.2 expressed first during de-
velopment, then being gradually replaced by Nav1.6 con-
comitantly with myelination (66, 67). Although greatly
diminished, the expression of Nav1.2 might persist in the
AIS of adult neurons and is maintained in populations of
unmyelinated axons. The two isoforms coexist in the AIS
of L5 pyramidal neurons with a proximal distribution of
Nav1.2 and a distal distribution of Nav1.6 (259). Sodium
channels in the distal part of the AIS display the lowest
threshold, suggesting that this polarized distribution
could explain the unique properties of the AIS, including
action potential initiation (principally mediated by
Nav1.6) and backpropagation (largely supported by
Nav1.2; Refs. 171, 259). A similar conclusion is drawn in
CA1 pyramidal neurons where Nav1.6 sodium channels
play a critical role for spike initiation (449).

FIG. 2. Schematic representation of
the distribution of sodium (top), potassium
(middle), and calcium (bottom) channels in
the different compartments of a myelinated
axon. The cell body is symbolized by a
pyramid shape (left). Channel densities are
figured by the density of color. The myelin
sheath is symbolized in gray. NoR, node of
Ranvier; AIS, axon initial segment. Uncer-
tain localizations are written in gray and
accompanied by a question mark.



Nav channels generate three different Na� currents
that can be distinguished by their biophysical properties,
namely, 1) the fast-inactivating transient Na� current
(INaT), the persistent Na� current (INaP), and the resur-
gent Na� current (INaR; i.e., a current activated upon
repolarization; Ref. 427). The two last currents are acti-
vated at subthreshold or near-threshold, and they play a
critical role in the control of neuronal excitability and
repetitive firing (345). INaP is responsible for amplification
of subthreshold excitatory postsynaptic potentials
(EPSP) and is primarily generated in the proximal axon
(21, 512). INaR is thought to facilitate reexcitation during
repetitive firing and is generated in the AIS of cortical
pyramidal neurons of the perirhinal cortex (99). INaR

might be present all along the axon since a recent study
indicates that this current shapes presynaptic action po-
tentials at the Calyx of Held (246).

B) POTASSIUM CHANNELS. Potassium channels are crucial
regulators of neuronal excitability, setting resting mem-
brane potentials and firing thresholds, repolarizing action
potentials, and limiting excitability. Specific voltage-gated

potassium (Kv) conductances are also expressed in the
AIS (see Fig. 2). Kv1 channels regulate spike duration in
the axon (291, 490; Fig. 4A). Kv1.1 and Kv1.2 are most
frequently associated at the initial segment of both excit-
atory and inhibitory cortical and hippocampal neurons
(267, 332), and tend to be located more distally than
Nav1.6. The current carried by these channels is indeed
10-fold larger in the distal part of the AIS than that mea-
sured in the soma (291). It belongs to the family of low-
voltage activated currents because a sizable fraction of
the current is already activated at voltages close to the
resting membrane potential (291, 490). These channels
are also directly implicated in the high fidelity of action
potential amplitude during burst firing (488).

Kv2.2 is present in the AIS of medial nucleus trape-
zoid neurons, where it promotes interspike hyperpolariza-
tion during repeated stimuli, thus favoring the extremely
high frequency firing of these neurons (275). Kv7 channels
(7.2 and 7.3), that bear the M-current (also called KCNQ
channels), are also found in the AIS of many central
neurons (154, 398, 546). These channels are essential to

FIG. 3. High concentration of func-
tional sodium channels at the AIS of cortical
pyramidal neurons. A: changes in intracellu-
lar Na� during action potentials are largest
in the AIS. A L5 pyramidal neuron was filled
with the Na�-sensitive dye SBFI and the
variations in fluorescence measured at dif-
ferent distances from the axon hillock. The
signal is larger in the AIS (25 �m) and rap-
idly declines along the axon (55 �m) or at
proximal locations (5 �m or soma).
[Adapted from Kole et al. (290), with permis-
sion from Nature Publishing Group.] B: Na�

channel density is highest at the AIS. Top:
Na� currents evoked by step depolariza-
tions (30 ms) from a holding potential of
�100 to �20 mV in outside-out patches ex-
cised from the soma (black), AIS (orange,
39 �m), and axon (red, 265 �m). Bottom:
average amplitude of peak Na� current ob-
tained from different compartments. [From
Hu et al. (259), with permission from Nature
Publishing Group.] C: high-resolution immu-
nogold localization of the Nav1.6 subunit in
AIS of CA1 pyramidal neuron. Gold parti-
cles labeling the Nav1.6 subunits are found
at high density on the protoplasmic face of
an AIS. Note the lack of immunogold parti-
cles in the postsynaptic density (PSD) of an
axo-axonic synapse. [From Lorincz and
Nusser (333), with permission from the
American Association for the Advancement
of Science.]



the regulation of AP firing in hippocampal principal cells,
where they control the resting membrane potential and
action potential threshold (399, 473, 474, 579).

C) CALCIUM CHANNELS. The last players that have re-
cently joined the AIS game are calcium channels (Fig. 2).
Using two-photon Ca2� imaging, Bender and Trussell (46)
showed that T- and R-type voltage-gated Ca2� channels
are localized in the AIS of brain stem cartwheel cells. In
this study, Ca2� entry in the AIS of Purkinje cells and

neocortical pyramidal neurons was also reported. These
channels regulate firing properties such as spike-timing,
burst-firing, and action potential threshold. The down-
regulation of T-type Ca2� channels by dopamine receptor
activation represents a powerful means to control action
potential output (45). Using calcium imaging, pharmaco-
logical tools, and immunochemistry, a recent study re-
ported the presence of P/Q-type (Cav2.1) and N-type
(Cav2.2) Ca2� channels in the AIS of L5 neocortical pyra-

Localization Channel Neuronal Type Region Reference Nos.

AIS Nav1.1 Fast-spiking PV� interneuron Hippocampus/cortex 394
Purkinje cell Cerebellum 394
Interneuron Olfactory bulb 394
Ganglion cell Retina 542

Spinal cord 169
Nav1.2 Immature myelinated axons Retina 67

Pyramidal neuron Neocortex 259
Nav1.6 Ganglion cell Retina 67

Pyramidal neuron Neocortex 259
Pyramidal neuron Hippocampus 333

Kv1.1 Pyramidal neuron Neocortex 332
Kv1.2 Pyramidal neuron Neocortex 267
Kv2.2 Medial nucleus trapezoid Brain stem 275
Kv7.2/7.3 CA1 and CA3 pyramidal cells hippocampus 154

NoR Nav1.1 Spinal cord 169
Hippocampus 169
Brain stem 169
Cerebellum 169

Nav1.2 Ganglion cell Retina 66
Nav1.6 Sciatic nerve 88

Optic nerve 88
Ganglion cell Retina 66
CA1 pyramidal cell Hippocampus 333

Kv1.1/1.2 Sciatic nerve 585
Spinal cord 378, 435

Kv3.1b Ganglion cell Retina 152
Kv7.2/7.3 Sciatic nerve 154

AP (unmyelinated) Nav1.2 Granule cell (MF axon) Hippocampus 223
Schaffer collaterals Hippocampus 223

Kv1.2 Schaffer collaterals Hippocampus 543
Kv1.3 Parallel fiber Cerebellar 305, 543
Kv3.3 Granule cell (MF axon) Hippocampus 105
Kv3.4 Granule cell (MF axon) Hippocampus 105
Kv7 CA1 pyramidal cell Hippocampus 546

AT Nav1.2 Mossy fiber terminal Hippocampus 223
Kv1.1/1.2 Principal cells Hippocampus 551
Schaeffer collateral Boutons Hippocampus 371

Thalamo-cortical neurons Neocortex 311
Basket cell pinceau Cerebellum 319, 504
Calyx of Held Brain stem 158, 268, 377
Interneurons Amygdala 192

Kv1.4 Mossy fiber Hippocampus 126, 478, 543
Kv3.1 Interneurons Neocortex 109, 556

Calyx of Held Brain stem 177, 268, 377
NTS neurons Brain stem 134

Kv3.2 Interneurons Neocortex 109
Purkinje cell Cerebellum 65

Kv3.4 Purkinje cell Cerebellum 65
Kv7.2/7.3 Mossy fiber Hippocampus 125
Kv7.5 Auditory neurons Brain stem 89
HCN1 Basket cells Hippocampus 15, 386, 459

Basket cells Cerebellum 334
GIRK1 Thalamo-cortical neurons Cortex 415
GIRK1/2/3 Granule cell Cerebellum 188

TABLE 2. Subcellular localization of ion channels in CNS and PNS axons



midal neurons (577). These channels determine pyramidal
cell excitability through activation of calcium-activated
BK channels.

2. Channels in unmyelinated axons

In unmyelinated fibers, action potential conduction is
supported by Nav1.2 sodium channels that are thought to
be homogeneously distributed (67, 223, 558).

At least five voltage-gated K� channel subunits are
present in unmyelinated fibers (Table 2). Kv1.3 channels
have been identified in parallel fiber axons of cerebellar
granule cells (305, 543). The excitability of Schaffer col-
laterals is strongly enhanced by �-dendrotoxin (DTX; a
blocker of Kv1.1, Kv1.2, and Kv1.6) or margatoxin (MgTx;
a blocker of Kv1.2 and Kv1.3), indicating that Kv1.2 is an
important channel subunit for controlling excitability in
these fibers (395). Hippocampal mossy fiber axons ex-

FIG. 4. K� channels determine AP
duration in AIS of L5 pyramidal neuron
and hippocampal mossy fiber terminals.
A: DTX-sensitive K� channels deter-
mine spike duration in L5 pyramidal ax-
ons. Top left: superimposed AP traces
recorded from the soma (black) and at
the indicated axonal distances from the
axon hillock (red). Top right: represen-
tative K� currents evoked by voltage
steps from �110 to �45 mV in cell-
attached patches from the soma, prox-
imal AIS (5–30 �m), distal AIS (35–55
�m), and axonal sites (up to 400 �m).
Bottom: impact of 50–100 nM DTX-I on
somatic (left) and axonal (right) APs
before (black) and after DTX-I (red).
Note the enlargement of AP in the AIS
but not in the soma. [From Kole et al.
(291), with permission from Elsevier.]
B: DTX-sensitive K� channels deter-
mine spike duration in mossy-fiber ter-
minal. Left: mossy-fiber bouton ap-
proached with a patch pipette. [From
Bischofberger et al. (58), with permis-
sion from Nature Publishing Group.]
Top right: K� current activated in a
mossy fiber bouton outside-out patch
by pulses from �70 to �30 mV in the
absence (control) and in the presence
of 1 �M �-dendrotoxin (�-DTX). Bot-

tom right: comparison of the spike
waveform in the soma and mossy fiber
terminal (MF terminal) of a hippocam-
pal granule cell. Note the large spike
duration in the soma. [Adapted from
Geiger and Jonas (209), with permis-
sion from Elsevier.]



press Kv3.3 and Kv3.4 channels (105). The Kv7 activator
retigabine reduces excitability of C-type nerve fibers of
human sural nerve (315). Kv7 channels determine excit-
ability of pyramidal CA1 cell axons (546).

3. Channels in the nodes of Ranvier

In myelinated axons, conduction is saltatory and is
made possible by the presence of hot spots of sodium
channels in the node of Ranvier (Fig. 2). Two principal
Na� channel isoforms are found in the nodes of PNS and
CNS axons: Nav1.6 and Nav1.1 (88, 169, 333; see Table 2).
In a recent study, Lorincz and Nusser (333) found that the
density of Nav1.6 subunit in the node of Ranvier is nearly
twice that observed in the AIS (�350 channels/�m2).
Transient and persistent sodium currents have been iden-
tified in the node of myelinated axons (47, 166).

Saltatory conduction at nodes is secured by the jux-
taparanodal expression of Kv1.1 and Kv1.2 channels, and
by the nodal expression of Kv3.1b and Kv7.2/Kv7.3, which
all concur to reduce reexcitation of the axon (152, 154,
165, 378, 435, 550, 551, 584, 585). Other calcium- or sodi-
um-activated potassium channels are encountered in the
nodal region of myelinated axons (see Table 2).

4. Channels in the axon terminals

Axonal propagation culminates in the activation of
chemical synapses with the opening of the presynaptic
Cav2.1 and Cav2.2 calcium channels (Fig. 2). With the use
of imaging techniques, the presence of calcium channels
has been identified in en passant boutons of cerebellar
basket cell axons where they presumably trigger trans-
mitter release (330). Hot spots of calcium influx have also
been reported at branch points (330). Although their func-
tion is not entirely clear, they may control signal trans-
mission in the axonal arborization. In addition, Cav1.2
(L-type) calcium channels that are sparsely expressed all
over hippocampal soma and dendrites are prominently
labeled by immunogold electron microscopy in hip-
pocampal axons and in mossy fiber terminals (531).

Functional sodium channels have been identified in
presynaptic terminals of the pituitary (2), at the terminal
of the calyx of Held (260, 320), and in hippocampal mossy
fiber terminal (179). While Nav1.2 is probably the sole
isoform of sodium channel expressed at terminals (in
agreement with its exclusive targeting to unmyelinated
portions of axons), terminal Kv channels exhibit a greater
diversity (159). Kv1.1/Kv1.2 subunits dominate in many
axon terminals (see Table 2 for details). Mossy fiber ax-
ons and boutons are enriched in Kv1.4 subunits (126, 478,
543) which determine the spike duration (Fig. 4B) and
regulate transmitter release (209). The other main func-
tion of Kv1 channels is preventing the presynaptic termi-
nal from aberrant action potential firing (158).

While Kv1 channels start to activate at low threshold,
Kv3 conductances are typical high-voltage-activated cur-
rents. They have been identified in terminals of many
inhibitory and excitatory neurons (see Table 2). Function-
ally, Kv3 channels keep action potential brief, thus limit-
ing calcium influx and hence release probability (218).

Kv7 channels are also present in preterminal axons
and synaptic terminals (see Table 2 for details). The spe-
cific M-channel inhibitor XE991 inhibits synaptic trans-
mission at the Schaffer collateral input, whereas the M-
channel opener retigabine has the opposite effect, sug-
gesting the presence of presynaptic Kv7 channels in
Schaffer collateral terminals (546). It should be noted that
these effects are observed in experimental conditions in
which the M-current is activated, i.e., in the presence of a
high external concentration of K�.

Other dampening channels such as the hyperpolar-
ization-activated cyclic nucleotide-gated cationic (HCN)
channels are expressed in the unmyelinated axon and in
axon terminals (see Table 2). H-channels are also encoun-
tered at the calyx of Held giant presynaptic terminal (133)
and in nonmyelinated peripheral axons of rats and hu-
mans (30, 225). The typical signature of H-channels is also
observed in cerebellar mossy fiber boutons recorded in
vitro or in vivo (432). The postsynaptic function of H-
channels is now well understood, but their precise role in
the preterminal axon and axon terminal is less clear. They
may stabilize membrane potential in the terminal. For
instance, the axons of cerebellar basket cells are partic-
ularly short, and any hyperpolarization or depolarization
arising from the somatodendritic compartment may sig-
nificantly change the membrane potential in the terminal
and thus alter transmitter release. Thus stabilizing mem-
brane potential in the terminal with a high density of HCN
channels may represent a powerful means to prevent
voltage shifts.

Besides voltage-gated conductances, axons and
axon terminals also contain several ion-activated con-
ductances including large-conductance, calcium-acti-
vated BK potassium channels (also called Maxi-K or
Slo1 channels; Refs. 258, 287, 377, 423, 455), small-
conductance calcium-activated SK potassium channels
(390, 447), and sodium-activated K� channels (KNa, also
called Slack channels or Slo2.2, Ref. 52) that are acti-
vated upon depolarization of the axon by the propagat-
ing action potential (Table 2). All these channels will
also limit excitability of the nerve terminal by prevent-
ing uncontrolled repetitive activity.

G protein-gated inwardly rectifying potassium (GIRK)
channels are also present at presynaptic terminals (Table 2).
In the cortex and the cerebellum, these channels are func-
tionally activated by GABAB receptors where they are
thought to control action potential duration (188, 308).



C. Ligand-Gated Receptors in the Axon

Axons do not contain only voltage- or metabolite-
gated ion channels but also express presynaptic vesicular
release machinery (586) and many types of ligand-gated
receptors including receptors to fast neurotransmitters
and slow neuromodulators. We will focus here only on
receptors that alter the excitability of the axon in physi-
ological conditions.

1. Receptors in the axon initial segment

The axon initial segments of neocortical and hip-
pocampal pyramidal neurons are particularly enriched in
axo-axonic inhibitory contacts (499–501). A single axon
initial segment receives up to 30 symmetrical synapses
from a single axo-axonic (chandelier) GABAergic cell
(500). Axon-initial segments contain a high concentration
of the �2 subunit variant of the GABAA receptor (81).
Axo-axonic synapses display a fast and powerful GABA-
ergic current (340). The strategic location of GABAergic
synapses on the AIS has generally been thought to endow
axo-axonic cells with a powerful inhibitory action on the
output of principal cells. However, this view has been
recently challenged. Gabor Tamás and colleagues (522)
recently discovered that axo-axonic synapses impinging
on L2–3 pyramidal neurons may be in fact excitatory in
the mature cortex. Importantly, the potassium-chloride
cotransporter 2 (KCC2) is very weakly expressed in the
AIS, and thus the reversal potential for GABA currents is
much more depolarized in the axon than in the cell body
(522). Similar conclusions have been drawn in the baso-
lateral amygdala (566) and in hippocampal granule cells
with the use of local uncaging of GABA in the different
compartments of the neuron (285). However, a recent
study using noninvasive techniques concludes that inhib-
itory postsynaptic potentials (IPSPs) may be hyperpolar-
izing throughout the entire neuron (211).

2. Receptors in the axon proper

GABAA receptors are not exclusively located in the
AIS, but they have also been demonstrated in myelinated
axons of the dorsal column of the spinal cord (456, 457)
and in axonal branches of brain stem sensory neurons
(545). Activation of these receptors modulates the com-
pound action potential conduction and waveform. In
some cases, propagation of antidromic spikes can be
blocked by electrical stimulation of local interneurons
(545). This effect is prevented by bath application of
GABAA receptor channel blocker, suggesting that conduc-
tion block results from activation of GABAA receptors
after the release of endogenous GABA. Similarly, GABAA

receptors have been identified in the trunk of peripheral
nerves (79). However, the precise mode of physiological
activation of these receptors remains unknown, and there

is no clear evidence that GABA is released from oligoden-
drocytes or Schwann cells (307).

Monoamines regulate axonal properties in neurons
from the stomatogastric ganglion of the crab or the lob-
ster (34, 82, 213, 366). They also determine axonal prop-
erties in mammalian axons. For instance, subtype 3 of the
serotonin receptor (5-HT3) modulates excitability of un-
myelinated peripheral rat nerve fibers (316).

Nicotinic acetylcholine receptors are encountered on
unmyelinated nerve fibers of mammals where they mod-
ulate axonal excitability and conduction velocity (18,
314).

3. Receptors in the periterminal axon and nerve

terminals

While the axon initial segment and the axon proper
contain essentially GABAA receptors, the preterminal
axon and nerve terminals are considerably richer and
express many different modulatory and synaptic recep-
tors (180). Only a subset of these receptors affects axonal
excitability.

A) GABAA RECEPTORS. Although GABAB receptors are
widely expressed on presynaptic excitatory and inhibi-
tory terminals (51, 536), their action on periterminal and
axonal excitability is slow and moderate. In contrast,
high-conductance GABAA receptors control axonal excit-
ability more accurately. Frank and Fuortes (197) first
hypothesized modulation of transmitter release via axo-
axonic inhibitory synapses to explain the reduction in
monosynaptic transmission in the spinal cord (reviewed
in Ref. 450). Based on the temporal correspondence be-
tween presynaptic inhibition and the depolarization of the
primary afferent terminals, Eccles and co-workers (174)
suggested that depolarization of the afferent was respon-
sible for the inhibition of synaptic transmission. It was
later shown that presynaptic inhibition is caused by a
reduction in transmitter release (168, 175). Since this
pioneering work, the primary afferent depolarization
(PAD) has been demonstrated with axonal recordings and
computational tools in many different sensory afferents
including the cutaneous primary afferents of the cat (224),
group Ib afferent fibers of the cat spinal cord (309, 312,
313), and sensory afferents of the crayfish (100–102).
These studies and others (132, 515) indicate that activa-
tion of GABAA receptors produces a decrease in the am-
plitude of the presynaptic AP, thus decreasing transmitter
release. Two mechanisms based on simulation studies
have been proposed to account for presynaptic inhibition
associated with PADs: a shunting mechanism (469) and
inactivation of sodium channels (226). In the crayfish, the
reduction in spike amplitude is mainly mediated by a
shunting effect, i.e., an increase in membrane conduc-
tance due to the opening of GABAA receptors (102). The



inactivation of sodium channels may add to the shunting
effect for larger PADs.

Single action potentials evoked in cerebellar stellate
and basket cells induce GABAergic currents measured in
the soma, indicating that release of GABA regulates ax-
onal excitability through GABAA autoreceptors (419). Ap-
plication of the GABAA receptor agonist muscimol in the
bath or locally to the axon modulates the excitability of
hippocampal mossy fibers (452). The sign of the effect
may be modulated by changing the intra-axonal Cl� con-
centration. Direct evidence for GABAA receptors on hip-
pocampal granule cell axons has been provided unambig-
uously by Alle and Geiger (6) by the use of patch-clamp
recordings from single mossy fiber boutons and local
application of GABA. In mechanically dissociated CA3
pyramidal neurons from young rats, mossy fiber-derived
release is strongly facilitated by stimulation of presynap-
tic GABAA receptors (273). This facilitation has been
extensively studied by Ruiz and co-workers (451) with
direct whole cell recordings from the mossy-fiber bouton.
GABAA receptors modulate action potential-dependent
Ca2� transients and facilitate LTP induction (451).

B) GLYCINE RECEPTORS. In a similar way, glycine recep-
tors may also control axonal excitability and transmitter
release. At the presynaptic terminal of the calyx of Held,
glycine receptors replace GABAA receptors as maturation
proceeds (538). Activation of presynaptic glycine recep-
tors produces a weakly depolarizing Cl� current in the
nerve terminal and enhances synaptic release (537). The
depolarization induces a significant increase in the basal
concentration of Ca2� in the terminal (24). Similar con-
clusions are reached in the ventral tegmental area where
presynaptic glycine receptors lead to the facilitation of
GABAergic transmission through activation of voltage-
gated calcium channels and intraterminal concentration
of Ca2� (573).

C) GLUTAMATE RECEPTORS. At least three classes of glu-
tamate receptors are encountered at presynaptic release
sites where they regulate synaptic transmission (412).
Only a small fraction of these receptors regulates axonal
excitability. In the CA1 region of the hippocampus, kai-
nate produces a marked increase in spontaneous IPSCs.
This effect might result from the direct depolarization of
the axons of GABAergic interneurons (472). In fact, kai-
nate receptors lower the threshold for antidromic action
potential generation in CA1 interneurons.

NMDA receptors are encountered in many axons.
They determine synaptic strength at inhibitory cerebellar
synapses (170, 212), at granule cell-Purkinje cell synapse
(54, 97), at L5-L5 excitatory connections (494), and at L2/3
excitatory synapses (127). However, recent studies indi-
cate that axonal NMDA receptors do not produce signif-
icant depolarization or calcium entry in cerebellar stellate
cells (111) and in L5 pyramidal cell axons (112) to signif-
icantly affect axonal excitability. In fact, NMDA receptors

might modulate presynaptic release simply by the elec-
trotonic transfer of the depolarization from the somato-
dendritic compartments to the axonal compartment (111,
112); see also sect. VC). However, such tonic change in
the somatodendritic compartment of the presynaptic cell
has not been observed in paired-recording when presyn-
aptic NMDA receptors are pharmacologically blocked
(494).

D) PURINE RECEPTORS. ATP and its degradation products,
ADP and adenosine, are considered today as important
signaling molecules in the brain (84). Classically ATP is
coreleased from vesicles with acetylcholine (437) or
GABA (274). However, a recent study indicates that ATP
can also be relased by the axon in a nonvesicular manner
through volume-activated anion channels (191). In fact,
propagating action potentials cause microscopic swelling
and movement of axons that may in turn stimulate vol-
ume-activated anion channels to restore normal cell vol-
ume through the release of water together with ATP and
other anions.

Purinergic receptors are divided into three main fam-
ilies: P1 receptors (G protein-coupled, activated by aden-
osine and subdivided into A1, A2A, A2B and A3 receptors),
P2X receptors (ligand-gated, activated by nucleotides and
subdivided into P2X1–7), and P2Y (G protein-coupled, ac-
tivated by nucleotides and subdivided into P2Y1–14) (85).
Purine receptors are found on axon terminals where they
modulate transmitter release. For instance, activation of
presynaptic A1 receptor powerfully inhibits glutamate,
but not GABA release, in the hippocampus (529, 574). In
contrast, activation of presynaptic P2X receptor by ATP
enhances GABA and glycine release in spinal cord (263,
442). P2X7 receptors are expressed on developing axons
of hippocampal neurons, and their stimulation promotes
axonal growth and branching in cultured neurons (155).

III. AXON DEVELOPMENT AND TARGETING OF

ION CHANNELS IN THE AXON

Neurons acquire their typical form through a stereo-
typed sequence of developmental steps. The cell initially
establishes several short processes. One of these neurites
grows very rapidly compared with the others and be-
comes the axon (161). The spatial orientation of the grow-
ing axon is under the control of many extracellular cues
that have been reviewed elsewhere (36, 156). This section
is therefore focused on the description of the major
events underlying development and targeting of ion chan-
nels in the three main compartments of the axon.

A. Axon Initial Segments

In addition to its role in action potential initiation
involving a high density of ion channels, the AIS might be
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also be defined by the presence of a specialized and
complex cellular matrix, specific scaffolding proteins, and
cellular adhesion molecules (393). The cellular matrix
together with the accumulation of anchored proteins
forms a membrane diffusion barrier (375, 563). This dif-
fusion barrier plays an important role in preferentially
segregating proteins into the axonal compartment. Re-
cently, a cytoplasmic barrier to protein traffic has been
described in the AIS of cultured hippocampal neurons
(502). This filter allows entry of molecular motors of the
kinesin-1 family (KIF5) that specifically carry synaptic
vesicle proteins which must be targeted to the axon. The
entry of kinesin-1 into the axon is due to the difference in
the nature of microtubules in the soma and the AIS (294).
Molecular motors (KIF17) that carry dendrite-targeted
postsynaptic receptors cannot cross the axonal filter (19,
502, 567). This barrier develops between 3 and 5 days in
vitro (i.e., �1 day after the initial elongation of the pro-
cess that becomes an axon).

The scaffolding protein ankyrin G (AnkG) is critical
for assembly of AIS and is frequently used to define this
structure in molecular terms (233). The restriction of
many AIS proteins within this small axonal region is
achieved through their anchoring to the actin cytoskele-
ton via AnkG (296). AnkG is attached to the actin cyto-
skeleton via �IV spectrin (49). Sodium channels, Kv7
channels, the cell adhesion molecule neurofascin-186
(NF-186), and neuronal cell adhesion molecules (NrCAM)
are specifically targeted to the AIS through interaction
with AnkG (154, 206, 245, 398). Furthermore, deletion of
AnkG causes axons to acquire characteristics of dendrites
with the appearance of spines and postsynaptic densities
(244). While Nav and Kv7 channels are clustered through
their interaction with AnkG, clustering of Kv1 channels in
the AIS is under the control of the postsynaptic density 93
(PSD-93) protein, a member of the membrane-associated
guanylate kinase (MAGUK) family (391). Some of the
interactions between channels and AnkG are regulated by
protein kinases. For instance, the protein kinase CK2
regulates the interaction between Nav and AnkG (75). But
other factors might also control the development and
targeting of Na� channels at the AIS. For instance, the
sodium channel �1 subunit determines the development
of Nav1.6 at the AIS (73). The absence of the phosphory-
lated I	B� at the AIS, an inhibitor of the nuclear tran-
scription factor-	B, impairs sodium channel concentra-
tion (458).

The AIS may also contain axon specification signals
(222). Cutting the axon of cultured hippocampal neurons
is followed by axonal regeneration at the same site if the
cut is �35 �m from the soma (i.e., the AIS is still con-
nected to the cell body). In contrast, regeneration occurs
from a dendrite if the AIS has been removed (222).

B. Nodes of Ranvier

During development, Nav1.2 channels appear first at
immature nodes of Ranvier (NoR) and are eventually
replaced by Nav1.6 (66). Later, Kv3.1b channels appear at
the juxtaparanodal region, just before Kv1.2 channels
(152). While targeting of ion channels at the AIS largely
depends on intrinsic neuronal mechanisms, the molecular
organization of the NoR and its juxtaparanodal region is
mainly controlled by interactions between proteins from
the axon and the myelinating glia (310, 393, 413). For
instance, in mutants that display abnormal myelin forma-
tion, Nav1.6 channels are dispersed or only weakly clus-
tered in CNS axons (66, 276). In PNS axons, nodes are
initiated by interactions between secreted gliomedin, a
component of the Schwann cell extracellular matrix, and
NF-186 (183). But once the node is initiated, targeting of
ion channels at the NoR resembles that at the AIS. Accu-
mulation of Nav channels at NoR also depends on AnkG
(173). However, Kv1 clustering at the juxtaparanodal re-
gion of PNS axons depends on the cell adhesion mole-
cules Caspr2 and TAG-1 that partly originate from the glia
but not on MAGUKs (257, 413, 414).

C. Axon Terminals

In contrast to the AIS and the NoR, much less is
known about the precise events underlying development
and targeting of ion channels in axon terminals. However,
the trafficking of N- and P/Q-type Ca2� channels to axon
terminal and that of GABAB receptors illustrate the pres-
ence of specific targeting motifs on axonal terminal pro-
teins. The COOH-terminal region of the N-type Ca2� chan-
nel (Cav2.2) contains an amino acid sequence that con-
stitutes a specific binding motif to the presynaptic protein
scaffold, allowing their anchoring to the presynaptic ter-
minal (356, 357). Furthermore, direct interactions have
been identified between the t-SNARE protein syntaxin
and N-type Ca2� channels (323, 479). Deletion of the
synaptic protein interaction (synprint) site in the intracel-
lular loop connecting domains II and III of P/Q-type Ca2�

channels (Cav2.1) not only reduces exocytosis but also
inhibits their localization to axon terminals (370).

One of the two subtypes of GABAB receptor
(GABAB1a) is specifically targeted to the axon (547). The
GABAB1a subunit carries two NH2-terminal interaction
motifs, the “sushi domains” that are potent axonal target-
ing signals. Indeed, mutations in these domains prevent
protein interactions and preclude localization of GABAB1a

subunits to the axon, while fusion of the wild-type
GABAB1a to mGluR1a preferentially redirects this soma-
todendritic protein to axons and their terminals (56).

In the pinceau terminal of cerebellar basket cells,
HCN1 channels develop during the end of the second



postnatal week (334). This terminal is particularly en-
riched in Kv1 channels (319), but the precise role of
molecular partners and scaffolding proteins in clustering
these channels remains unknown (392).

IV. INITIATION AND CONDUCTION OF ACTION

POTENTIALS

A. Action Potential Initiation

Determining the spike initiation zone is particularly
important in neuron physiology. The action potential clas-
sically represents the final step in the integration of syn-
aptic messages at the scale of the neuron (41, 514). In
addition, most neurons in the mammalian central nervous
system encode and transmit information via action poten-
tials. For instance, action potential timing conveys signif-
icant information for sensory or motor functions (491). In
addition, action potential initiation is also subject to many
forms of activity-dependent plasticity in central neurons
(493). Thus information processing in the neuronal cir-
cuits greatly depends on how, when, and where spikes are
generated in the neuron.

1. A brief historical overview

Pioneering work in spinal motoneurons in the 1950s
indicated that action potentials were generated in the AIS
or possibly the first NoR (124, 187, 202). Microelectrode
recordings from motoneurons revealed that the action
potential consisted of two main components: an “initial
segment” (IS) component was found to precede the full
action potential originating in the soma [i.e., the somato-
dendritic (or SD) component]. These two components
could be isolated whatever the mode of action potential
generation (i.e., antidromic stimulation, direct current in-
jection, or synaptic stimulation), but the best resolution
was obtained with the first derivative of the voltage. The
IS component is extremely robust and can be isolated
from the SD component by antidromic stimulation of the
axon in a double-shock paradigm (124). For very short
interstimulus intervals, the SD component fails but not
the IS component. With simultaneous recordings at mul-
tiple axonal and somatic sites of the lobster stretch re-
ceptor neuron, Edwards and Ottoson (176) also reported
that the origin of the electrical impulse occurred first in
the axon, but at a certain distance from the cell body
(176).

This classical view was challenged in the 1980s and
1990s with the observation that under very specific con-
ditions, action potentials may be initiated in the dendrites
(438). The development in the 1990s of approaches using
simultaneous patch-pipette recordings from different lo-
cations on the same neuron was particularly precious to

address the question of the site of action potential initia-
tion (514, 516). In fact, several independent studies con-
verged on the view that dendrites were capable of gener-
ating regenerative spikes mediated by voltage-gated so-
dium and/or calcium channels (220, 331, 462, 513, 565).
The initiation of spikes in the dendrites (i.e., preceding
somatic action potentials) has been reported in neocorti-
cal (513), hippocampal (220), and cerebellar neurons
(431) upon strong stimulation of dendritic inputs. How-
ever, in many different neuronal types, threshold stimu-
lations preferentially induce sodium spikes in the neuro-
nal compartment that is directly connected to the axon
hillock (60, 242, 318, 354, 506, 511, 513, 516). Thus the
current rule is that the axon is indeed a low-threshold
initiation zone for sodium spike generation. But the initi-
ation site was precisely located only recently by direct
recording from the axon.

2. Initiation in the axon

The recent development of techniques allowing
loose-patch (22, 70, 116, 362, 422) or whole cell recording
(291, 355, 463, 489, 561) from single axons of mammalian
neurons, together with the use of voltage-sensitive dyes
(196, 396, 397) or sodium imaging (46, 193, 290), provide
useful means to precisely determine the spike initiation
zone. These recordings have revealed that sodium spikes
usually occur in the axon before those in the soma (Fig. 5,
A and B). More specifically, the initiation zone can be
estimated as the axonal region where the advance of the
axonal spike relative to the somatic spike is maximal (Fig.
5C). In addition, bursts of action potentials are generally
better identified in the axon than in the cell body (355,
561).

In myelinated axons, action potentials are initiated at
the AIS (22, 196, 283, 284, 396, 397, 488, 578). Depending
on cell type, the initiation zone varies being located be-
tween 15 and 40 �m from the soma. In layer 5 pyramidal
neurons, the action potential initiation zone is located in
the distal part of the AIS, i.e., at 35–40 �m from the axon
hillock (70, 397, 578). Similar estimates have been ob-
tained in subicular pyramidal neurons with an AP initia-
tion zone located at �40 �m from the soma, beyond the
AIS (119). The precise reason why the locus of axonal
spike generation in myelinated fibers varies between the
AIS and the first NoR is not known, but it may result from
the heterogeneous distribution of Nav and Kv channels as
well as the existence of ectopic zones for spike initiation
(410, 580). In cerebellar Purkinje cell axons, the question
was debated until recently. On the basis of latency differ-
ences between simultaneous whole cell somatic and cell-
attached axonal recordings, the action potential was
found to be generated at the first NoR (at a distance of
�75 �m; Ref. 116). However, in another study, it was
concluded that spike initiation was located at the AIS (i.e.,



15–20 �m from the soma; Ref. 284). Here, the authors
found that the AIS but not the first NoR was very highly
sensitive to focal application of a low concentration of
TTX. Initiation in the AIS has recently been confirmed by
the use of noninvasive recording techniques (196, 396).
The origin of the discrepancy between the first two stud-
ies has been elucidated. In fact, cell-attached recordings

from the axon initial segment are not appropriate because
the capacitive and ionic currents overlap, preventing iden-
tification of the spike onset.

In unmyelinated axons, the initiation zone has been
identified at 20–40 �m from the axon hillock. In CA3
pyramidal neurons, the AP initiation zone is located at
35–40 �m from the soma (363). A much shorter distance

FIG. 5. Spike initiation in the AIS. A: con-
focal images of two L5 pyramidal neurons la-
beled with biocytin (A. Bialowas, P. Giraud,
and D. Debanne, unpublished data). Note the
characteristic bulbous end of the severed axon
(“bleb”) B: dual soma-axonal bleb recording in
whole-cell configuration from a L5 pyramidal
neuron. Left: scheme of the recording config-
uration. Right: action potentials measured in
the soma (black) and in the axon (red). C:
determination of the spike initiation zone.
Scheme of the time difference between axonal
and somatic spikes as a function of the axonal
distance (origin: soma). The maximal advance
of the axonal spike is obtained at the AIS (i.e.,
the spike initiation zone). The slope of the
linear segment of the plot gives an estimate of
the conduction velocity along the axon.



has been reported in hippocampal granule cell axons. The
site of initiation has been estimated at 20 �m from the
axon hillock (463). This proximal location of the spike
initiation zone is corroborated by the labeling of sodium
channels and ankyrin-G within the first 20 �m of the axon
(299). A possible explanation for this very proximal loca-
tion might be that the very small diameter of granule cell
axons (�0.3 �m, Ref. 208) increases the electrotonic
distance between the soma and proximal axonal compart-
ments, thus isolating the site of initiation from the soma.

3. Threshold of action potential initiation

An essential feature of the all-or-none property of the
action potential is the notion of a threshold for eliciting a
spike. Converging evidence points to the fact that neuro-
nal firing threshold may not be defined by a single value.
The first studies of Lapicque (317) were designed to de-
scribe the role of depolarization time on the threshold
current: the threshold current was reduced when its du-
ration increased. Based on Hodgkin-Huxley membrane

equations, Noble and Stein (384, 385) defined the spike
threshold as the voltage where the summed inward mem-
brane current exceeds the outward current.

In contrast with current threshold, voltage threshold
could not be assessed in neurons until intracellular re-
cords were obtained from individual neurons (77). Given
the complex geometry of the neuron, a major question
was raised in the 1950s: is action potential threshold
uniform over the neuron? Since the spike is initiated in
the axon, it was postulated that the voltage threshold was
10–20 mV lower (more hyperpolarized) in the AIS than in
the cell body (124). Because direct recording from the
axon was not accessible for a long time, there was little
evidence for or against this notion. In an elegant study,
Maarten Kole and Greg Stuart recently solved this ques-
tion with direct patch-clamp recordings from the AIS
(292). They showed that the current threshold to elicit an
action potential is clearly lower in the AIS (Fig. 6A).
However, the voltage threshold defined as the membrane
potential at which the rate of voltage (i.e., the first deriv-

FIG. 6. Spike threshold is lowest in the AIS. A: lower currrent threshold but high voltage in the AIS of L5 pyramidal neurons. Left: overlaid 
voltage responses during current injection into the AIS (blue) or soma (black) at the action potential threshold. Note the depolarized voltage 
threshold in the AIS compared with the soma. Right: average amplitude of injected current versus action potential probability for action potentials 
evoked by current injection in the AIS (open circles) or soma (solid circles). Note the lower current threshold in the AIS. B: slow depolarizing ramp 
mediated by Na� channel in the AIS but not in the soma. Left: action potentials generated by simulated EPSC injection at the soma and recorded 
simultaneously at the soma (AIS) and AIS (blue). Middle: same recording in the presence of TTX (1 �M). Right: voltage difference (AIS-soma) in 
control (gray) and TTX (red) reveals a depolarizing ramp in the AIS before spike intiation. [Adapted from Kole and Stuart (292), with permission 
from Nature Publishing Group.]



ative) crosses a certain value (generally 10–50 V/s, Refs.
10, 201, 471) appeared surprisingly to be highest in the
axon (Fig. 6A). This counterintuitive observation is due to
the fact that Na� channels in the AIS drive a local depo-
larizing ramp just before action potential initiation that
attenuates over very short distances as it propagates to
the soma or the axon proper, thus giving the impression
that the voltage threshold is higher (Fig. 6B). When this
local potential is abolished by focal application of TTX to
the AIS, then the voltage threshold is effectively lower in
the AIS (292). In other words, the spike threshold mea-
sured out of the AIS is a propagating spike, and the
correct measure in this compartment is the threshold of
the SD component. This subtlety may also be at the origin
of unconventional proposals for Na� channel gating dur-
ing action potential initiation (35, 236, 359, 379, 578).
Indeed, the onset of the action potential appears faster in
the soma than expected from Hodgkin-Huxley modelling.

The spike threshold is not a fixed point but rather
corresponds to a range of voltage. For instance, intraso-
matic recordings from neocortical neurons in vivo reveal
that spike threshold is highly variable (26, 27, 248). The
first explanation usually given to account for this behavior
involves channel noise. In fact, the generation of an AP
near the threshold follows probability laws because the
opening of voltage-gated channels that underlie the so-
dium spike is a stochastic process (465, 560). The number
of voltage-gated channels is not large enough to allow the
contribution of channel noise to be neglected.

However, this view is now challenged by recent find-
ings indicating that the large spike threshold variability
measured in the soma results from back-propagation of
the AP from the AIS to the soma when the neuron is
excited by trains of noisy inputs (578). In fact, at the point
of spike initiation (i.e., the AIS), the spike is generated
with relatively low variance in membrane potential
threshold but as it back-propagates towards the soma,
variability increases. This behavior is independent of
channel noise since it can be reproduced by a determin-
istic Hodgkin-Huxley model (578). The apparent increase
in spike threshold variance results in fact from the rear-
rangement of the timing relationship between spikes and
the frequency component of subthreshold waveform dur-
ing propagation.

4. Timing of action potential initiation

Synchronous population activity is critical for a wide
range of functions across many different brain regions
including sensory processing (491), spatial navigation
(388), and synaptic plasticity (53, 142, 143). Whereas tem-
poral organization of network activity clearly relies on
both timing at the synapse (70) and elsewhere within the
network (441), the mechanisms governing precise spike
timing in individual neurons are determined at the AIS.

Recently, the rules governing the temporal precision of
spike timing have started to emerge.

Outward voltage-gated currents with biophysical
properties that sharpen physiological depolarizations,
such as EPSPs, reduce the time window during which an
action potential can be triggered and thus enhance spike
precision (25, 200, 207). In contrast, outward currents that
reduce the rate of depolarization leading to the generation
of a spike decrease spike-time precision (131, 503). Here,
high spike jitter may result from the fact that channel
noise near the threshold becomes determinant during
slow voltage trajectories. With the recent development of
axonal recordings, it will be important to determine how
these currents shape voltage in the AIS.

5. Plasticity of action potential initiation

The probability of action potential initiation in re-
sponse to a given stimulus is not absolutely fixed during
the life of a neuron but subjected to activity-dependent
regulation. In their original description of LTP, Bliss and
Lømo (63) noticed that the observed increase in the pop-
ulation spike amplitude, which reflects the number of
postsynaptic neurons firing in response to a given synap-
tic stimulation, was actually greater than simply expected
by the LTP-evoked increase in the population EPSP (63).
This phenomenon was termed EPSP-spike or E-S poten-
tiation. The intracellular signature of E-S potentiation is
an increased probability of firing in response to a given
synaptic input. This plasticity appears to be of fundamen-
tal importance because it directly affects the input-output
function of the neuron. Originally described in the dentate
gyrus of the hippocampus, E-S potentiation was also
found at the Schaffer collateral-CA1 cell synapse when
the afferent fibers were tetanized (1, 9, 136) and maybe
induced associatively with coincident activation of syn-
aptic input and a back-propagated action potential (91).
Although dendritic conductances such as A-type K� (199)
or h-type currents (90) are implicated in its expression,
regulation of axonal channels cannot totally be excluded.
Indeed, hyperpolarization of the spike threshold has been
encountered in many forms of long-lasting increase in
excitability in cerebellar and hippocampal neurons (3,
568). Furthermore, activation of the fast transient Na�

current is regulated following LTP induction in CA1 py-
ramidal neurons (568).

B. Conduction of Action Potentials Along the Axon

1. A brief overview of the principle of conduction in

unmyelinated axons

Conduction of the action potential has been primarily
studied and characterized in invertebrate axons. Accord-
ing to a regenerative scheme, propagation along unmyeli-



nated axons depends on the passive spread of current
ahead of the active region to depolarize the next segment
of membrane to threshold. The nature of the current flow
involved in spike propagation is generally illustrated by
an instantaneous picture of the action potential plotted
spatially along the axon. Near the leading edge of the
action potential there is a rapid influx of sodium ions that
will lead to depolarization of a new segment of membrane
towards threshold. At the following edge of the action
potential, current flows out because potassium channels
are opened, thus restoring the membrane potential to-
wards the resting value. Because of both the inactivation
of voltage-gated Na� channels and the high conductance
state of hyperpolarizing K� channels, the piece of axonal
membrane that has been excited is not immediately reex-
citable. Thus the action potential cannot propagate back-
ward, and conduction is therefore generally unidirec-
tional. As the action potential leaves the activated region,
Na� channels recover from inactivation, K� conductance
declines, and the membrane is thus susceptible to be
reexcited.

2. Conduction in myelinated axons

In myelinated (or medulated) axons, conduction is
saltatory (from Latin saltare, to jump). Myelin is formed
by wrapped sheaths of membrane from Schwann cells in
peripheral nerves and oligodendrocytes in central axons.
The number of wrappings varies between 10 and 160 (17).
The presence of the myelin sheath has a critical impact on
the physiology of the axon. The effective membrane re-
sistance of the axon is locally increased by several orders
of magnitude (up to 300 times), and the membrane capac-
itance is reduced by a similar factor. The myelin sheath is
interrupted periodically by NoR, exposing patches of ax-
onal membrane to the external medium. The internodal
distance is usually 100 times the external diameter of the
axon, ranging between 200 �m and 2 mm (264, 453). The
electrical isolation of the axon by myelin restricts current
flow to the node, as ions cannot flow into or out of the
high-resistance internodal region. Thus only the restricted
region of the axon at the node is involved in impulse
propagation. Therefore, the impulse jumps from node to
node, thereby greatly increasing conduction velocity. An-
other physiologically interesting consequence of myelina-
tion is that less metabolic energy is required to maintain
the gradient of sodium and potassium since the flow of
these ions is restricted to the nodes. However, a recent
study from the group of Geiger (7) indicates that because
of matched properties of Na� and K� channels, energy
consumption is minimal in unmyelinated axons of the
hippocampus.

The principle of saltatory conduction was first sug-
gested by Lillie in 1925 (326) and later confirmed by direct
experimental evidence (69, 265, 407, 527). In their seminal

paper, Huxley and Stämpfli (265) measured currents in
electrically isolated compartments of a single axon, con-
taining either a node or an internode, during the passage
of an impulse. They noticed that when the compartment
contained a NoR, stimulation of the nerve resulted in a
large inward current. In contrast, no inward current was
recorded when the chamber contained an internode, thus
indicating that there is no regenerative activity. The dis-
continuous nature of saltatory conduction should not be
emphasized too much, however, because 30 consecutive
NoR can participate simultaneously in some phases of the
action potential.

3. Conduction velocity

Conduction velocity in unmyelinated axons depends
on several biophysical factors such as the number of
available Na� channels, membrane capacitance, internal
impedance, and temperature (122, 148, 251, 252, 277).
Conduction velocity can be diminished by reducing exter-
nal Na� concentration (277) or partially blocking Na�

channels with a low concentration of TTX (122). In fact,
the larger the sodium current, the steeper the rate of rise
of the action potential. As a consequence, the spatial
voltage gradient along the fiber is steeper, excitation of
adjacent axonal regions is faster, and conduction velocity
is increased.

The second major determinant of conduction is
membrane capacity. Membrane capacity determines the
amount of charge stored on the membrane per unit area.
Thus the time necessary to reach the threshold is obvi-
ously shorter if the capacity is small.

The third major parameter for conduction velocity is
the resistance of the axoplasm (i.e., the intra-axonal me-
dium). For instance, in the giant squid axon, the insertion
of a low-impedance wire cable in the axon considerably
increases the rate of conduction (148). This property
explains why conduction velocity in unmyelinated axons
is proportional to the square root of the axon diameter
(251). In fact, the current flow is facilitated in large-
diameter axons because of the high intracellular ion mo-
bility.

Temperature has large effects on the rate of increase
of Na� channel conductance and action potential wave-
form (253). Channels open and close more slowly at lower
temperature, and subsequently conduction velocity is re-
duced (106, 198).

In myelinated axons, conduction displays linear de-
pendence on fiber diameter (17, 264, 444, 453). A simple
rule is that every micrometer of outer diameter adds 6 m/s
to the conduction velocity at 37°C. One particularly fas-
cinating point addressed by the theoretical work of
Rushton (453) is the notion of invariance in the conduc-
tion properties and morphological parameters of myelin-
ated axons. In fact, the geometry of myelinated axons



seems to be tuned by evolution to give the highest con-
duction velocity.

Conduction velocity in mammalian axons has been
evaluated traditionally by antidromic latency measure-
ments or field measurements of axon volleys (300, 521).
More direct measurements of conduction velocity have
been obtained recently with the development of axonal
patch-clamp recordings in brain tissue. In unmyelinated
axons, conduction velocity is generally slow. It has been
estimated to be close to 0.25 m/s at Schaffer collateral (8)
or at the mossy-fiber axon (299, 463), and reach 0.38 m/s
in the axon of CA3 pyramidal neurons (363). In contrast,
conduction becomes faster in myelinated axons, but it
largely depends on the axon diameter. In fact, myelination
pays in terms of conduction velocity when the axon di-
ameter exceeds 1–2 �m (453). In the thin Purkinje cell
axon (�0.5–1 �m), conduction velocity indeed remains
relatively slow (0.77 m/s; Ref. 116). Similarly, in the my-
elinated axon of L5 neocortical pyramidal neurons of the
rat (diameter �1–1.5 �m; Ref/ 290), conduction velocity
has been estimated to be 2.9 m/s (291). Conduction ve-
locity along small axons of neurons from the subthalamic
nucleus is also relatively modest (4.9 m/s; diameter �0. 5
�m; Ref. 22). In contrast, in large-diameter axons such as
cat brain stem motoneuron fibers (�5 �m), the conduc-
tion velocity reaches 70–80 m/s (214). Similarly, in group
I afferents of the cat spinal cord, conduction velocity has
been estimated to vary between 70 and 90 m/s (309). The
fastest impulse conduction in the animal kingdom has
been reported in myelinated axons of the shrimp, which
are able to conduct impulses at speeds faster than 200 m/s
(569). These axons possess two unique structures (micro-
tubular sheath and submyelinic space) that contribute to
speed-up propagation. In particular, the submyelinic
space constitutes a low-impedance axial path that acts in
a similar way to the wire in the experiment of del Castillo
and Moore (148).

4. Modulation of conduction velocity

Conduction velocity along myelinated axons has
been shown to depend also on neuron-glia interactions
(123, 190, 526, 570). Importantly, depolarization of a single
oligodendrocyte was found to increase the action poten-
tial conduction velocity of the axons it myelinates by
�10% (570). Although the precise mechanism has not
been yet fully elucidated, it may result from ephaptic
interaction between the myelin depolarization and the
axon (280; see also sect. VIIIC). This finding may have
important functional consequences. Mature oligodendro-
cytes in the rat hippocampus are depolarized by theta
burst stimulation of axons. Thus myelin may also dynam-
ically regulate impulse transmission through axons and
promote synchrony among the multiple axons under the
domain of an individual oligodendrocyte (570). In a recent

study, the conduction velocity in small myelinated axons
was found to depend on tight junctions between myelin
lamellae (153). The absence of these tight junctions in
Claudin 11-null mice does not perturb myelin formation
but significantly decreases conduction velocity in small,
but not in large, myelinated axons. In fact, tight junctions
in myelin potentiate the insulation of small axons, which
possess only a relatively limited number of myelin loops,
by increasing their internodal resistance.

In auditory thalamocortical axons, nicotine enhances
conduction velocity and decreases axonal conduction
variability (282). Although the precise mechanism re-
mains to be clarified, this process may lower the thresh-
old for auditory perception by acting on the thalamocor-
tical flow of information.

V. FUNCTIONAL COMPUTATION IN THE AXON

A. Activity-Dependent Shaping of the Presynaptic

Action Potential

The shape of the presynaptic action potential is of
fundamental importance in determining the strength of
synapses by modulating transmitter release. The wave-
form of the depolarization dictates the calcium signal
available to trigger vesicle fusion by controlling the open-
ing of voltage-gated calcium channels and the driving
force for calcium influx. Two types of modification of the
presynaptic action potential have been reported experi-
mentally: modifications of action potential width and/or
modifications of action potential amplitude.

1. Activity-dependent broadening of presynaptic

action potential

The duration of the presynaptic spike is not fixed,
and activity-dependent short-term broadening of the
spike has been observed in en passant mossy fiber bou-
tons (209). The mossy fiber-CA3 pyramidal cell synapse
displays fast synchronized transmitter release from sev-
eral active zones and also shows dynamic changes in
synaptic strength over a more than 10-fold range. The
exceptionally large synaptic facilitation is in clear con-
trast to the weak facilitation (�150% of the control) gen-
erally observed at most central synapses. Granule cell
axons exhibit several voltage-gated potassium channels
including Kv1.1 (443), Kv1.2 (477), and two A-type potas-
sium channels, Kv1.4 (126, 478, 543) and Kv3.4 (543).
Geiger and Jonas (209) have shown that the action poten-
tial at the mossy fiber terminal is half as wide as that at
the soma. During repetitive stimulation, the action poten-
tial gets broader in the axon terminal but not in the soma
(209) (Fig. 7). More interestingly, using simultaneous re-
cordings from the granule cell terminal and the corre-



sponding postsynaptic apical dendrite of a CA3 neuron,
Geiger and Jonas (209) showed that action potential
broadening enhanced presynaptic calcium influx and dou-
bled the EPSC amplitude (Fig. 7). This broadening results
from the inactivation of A-type K� channels located in the
membrane of the terminal. Consequently, the pronounced
short-term facilitation probably results from the conju-
gated action of spike widening and the classical accumu-
lation of residual calcium in the presynaptic terminal.
Because ultrastructural analysis reveals A-type channel
immunoreactivity in the terminal but also in the axonal
membrane (126), activity-dependent spike broadening
might also occur in the axon.

2. Activity-dependent reduction of presynaptic action

potential

Reduction of the amplitude of the presynaptic action
potential has been reported following repetitive stimula-
tion of invertebrate (230) or mammalian axons (209, 552).
This decline results from sodium channel inactivation and
can be amplified by low concentrations of TTX (78, 343).
The consequences of sodium channel inactivation on syn-
aptic transmission have been studied at various central
synapses. Interestingly, the reduction of the sodium cur-
rent by application of TTX in the nanomolar range de-
creases glutamatergic transmission and enhances short-
term depression (78, 243, 421). In addition, the depolar-
ization of the presynaptic terminal by raising the external
potassium concentration increases paired-pulse synaptic
depression at autaptic contacts of cultured hippocampal
cells (243) and decreases paired-pulse synaptic facilita-
tion at Schaffer collateral-CA1 synapses stimulated extra-
cellularly (364). In this case, the depolarization of the
presynaptic axons is likely to enhance presynaptic spike
attenuation. Importantly, inactivation of sodium channels
by high external potassium increases the proportion of
conduction failures during repetitive extracellular stimu-
lation of Schaffer collateral axons (364). However, these
results must be interpreted carefully because apparent
changes in paired-pulse ratio may simply be the result of

stimulation failures produced by the reduction in presyn-
aptic axon excitability.

Interestingly, the manipulations of the sodium cur-
rent mentioned above have little or no effect on GABA-
ergic axons (243, 364, 421). Riluzole, TTX, or external
potassium affect neither GABAergic synaptic transmis-
sion nor short-term GABAergic plasticity. This difference
between glutamatergic and GABAergic axons might result
from several factors. Sodium currents in interneurons are
less sensitive to inactivation, and a slow recovery from
inactivation has been observed for pyramidal cells but not
for inhibitory interneurons (353). Moreover, the density of
sodium current is higher in interneurons than in pyrami-
dal neurons (354). Thus axons of GABAergic interneurons
could be better cables for propagation than those of py-
ramidal cells (194, 525). This unusual property could be
important functionally: safe propagation along inhibitory
axons could protect the brain from sporadic hyperactivity
and prevent the development of epileptiform activity.

B. Signal Amplification Along the Axon

Signal amplification is classically considered to be
achieved by the dendritic membrane, the cell body, or the
proximal part of the axon (21, 512). Whereas action po-
tential propagation along the axon is clearly an active
process that depends on a high density of sodium chan-
nels, the process of action potential invasion into presyn-
aptic terminals was, until recently, less well understood.
This question is of primary importance because the geo-
metrical perturbation introduced by the presynaptic ter-
minal decreases the safety factor for action potential
propagation and may affect the conduction time (see sect.
VIII). The invasion of the spike is active at the amphibian
neuromuscular junction (278) but passive at the neuro-
muscular junction of the mouse (76, 163) and the lizard
(329). This question has been reconsidered at hippocam-
pal mossy fiber boutons (179). In this study, Engel and
Jonas (179) showed that sodium channel density is very
high at the presynaptic terminal (2,000 channels/mossy

FIG. 7. Shaping of the action potential in the axon. A: a mossy fiber bouton (mfb, blue) is recorded in the whole cell configuration and activated
at a frequency of 50 Hz. B: during repetitive stimulation of the axon, the action potential becomes wider. The 10th and 50th action potentials are
compared with the 1st action potential in the train. C: action potential broadening potentiates transmitter release. A mossy fiber terminal (red) and
the corresponding CA3 cell (blue) were recorded simultaneously. Action potential waveforms were imposed at the presynaptic terminal. The
increased duration of the waveform incremented the amplitude of the synaptic current. [Adapted from Geiger and Jonas (209), with permission from
Elsevier.]



fiber bouton). In addition, sodium channels in mossy fiber
boutons activate and inactivate with submillisecond ki-
netics. A realistic computer simulation indicates that the
density of sodium channels found in the mossy fiber
bouton not only amplifies the action potential but also
slightly increases the conduction speed along the axon
(179). Similarly, presynaptic sodium channels control the
resting membrane potential at the presynaptic terminal of
the calyx of Held (260), and hence may determine trans-
mitter release at this synapse.

Another mechanism of activity-dependent signal am-
plification has been reported at hippocampal mossy fiber
(376). In immature hippocampus, repetitive stimulation of
the mossy fiber pathway not only facilitates synaptic
transmission but also facilitates the amplitude of the pre-
synaptic volley, the electrophysiological signature of the
presynaptic action potential in the axon recorded extra-
cellularly. This axonal facilitation is not observed in ma-
ture hippocampus. It is associated with the depolarization
of mossy fibers and fully inhibited by GABAA receptor
antagonists, indicating that GABA released from interneu-
rons depolarizes the axon and increases its excitability.
Because the presynaptic axon was not directly recorded
in this study, further investigations will be necessary to
determine whether GABAA receptor depolarization limits
conduction failures or interacts with sodium channel am-
plification.

C. Axonal Integration (Analog Signaling)

Classically, the somatodendritic compartment is con-
sidered as the locus of neuronal integration where sub-
threshold electrical signals originating from active syn-
apses are temporally summated to control the production
of an output message, the action potential. According to
this view, the axon initial segment is the final site of
synaptic integration, and the axon remains purely devoted
to action potential conduction in a digital way. Synaptic
strength can be modulated by the frequency of presynap-
tic action potential firing. Today, this view is now chal-
lenged by accumulating evidence in invertebrate and ver-
tebrate neurons showing that the axon is also able to
integrate electrical signals arising from the somato-den-
dritic compartment of the neuron (for reviews, see Refs.
4, 115, 351, 410). In fact, the axon appears now to be a
hybrid device that transmits neuronal information
through both action potentials in a digital way and sub-
threshold voltage in an analog mode.

1. Changes in presynaptic voltage affect synaptic

efficacy

The story started with classical observations re-
ported at the neuromuscular junction of the rat (261, 262),
and at the giant synapse of the squid (237, 369, 524),

where the membrane potential of the presynaptic axon
was found to control the efficacy of action potential-
triggered synaptic transmission. Synaptic transmission
was found to be gradually enhanced when the membrane
potential of the presynaptic element was continuously
hyperpolarized to different membrane potentials. Thus
the membrane potential of the presynaptic element deter-
mines, in an analog manner, the efficacy of the digital
output message (the action potential). This facilitation
was associated with a reduction in the paired-pulse ratio
(369), indicating that it results from enhanced presynaptic
transmitter release. Although the mechanisms underlying
this behavior have not been clearly identified, it should be
noted that graded presynaptic hyperpolarization in-
creased the presynaptic spike amplitude in a graded man-
ner (237, 369, 524). The importance of the amplitude of
the presynaptic action potential is also demonstrated by
the reduction of the evoked EPSP upon intracellular in-
jection of increasing concentrations of TTX in the presyn-
aptic axon (279). Thus a possible scheme here would be
that hyperpolarization of the presynaptic element induces
Na� channel recovery from inactivation and subsequently
enhance presynaptic spike and EPSP amplitudes. A sim-
ilar phenomenon has been recently observed at autaptic
contacts in cultured hippocampal neurons (528).

A totally different scenario has been observed in the
Aplysia (475, 486, 487) and the leech (382). In these
studies on connected pairs of neurons, the authors re-
ported that constant or transient depolarization of the
membrane potential in the soma of the presynaptic neu-
ron facilitates synaptic transmission evoked by single
action potentials, in a graded manner (Fig. 8A). The un-
derlying mechanism in Aplysia neurons involves the ac-
tivation of steady-state Ca2� currents (475) and inactiva-
tion of 4-aminopyridine-sensitive K� current (484, 485)
which overcome propagation failures in a weakly excit-
able region of the neuron (184). Thus the possible sce-
nario in Aplysia neurons is that somatic depolarization
may inactivate voltage-gated K� currents located in the
axon that control the propagation and subsequently the
amplitude and duration of the action potential.

It is also important to mention that many types of
invertebrate neuron release neurotransmitter as a graded
function of presynaptic membrane potential (11, 86, 227).
In these examples, synaptic transmission does not strictly
depend on spiking but rather on variations of the presyn-
aptic membrane potential, further supporting the idea
that membrane potential alone is capable of controlling
neuronal communication in an analog manner.

2. Space constant in axons

In the experiments reported in Aplysia, facilitation
was induced by changing membrane potential in the
soma, indicating that the presynaptic terminal and the cell



body are not electrically isolated. Thus the biophysical
characteristics of electrical transfer along the axon ap-
pear as the critical parameter determining axonal integra-
tion of somatic signals.

For biophysicists, the axon is viewed as a cylinder
that can be subdivided into unit lengths. Each unit length

is a parallel circuit with its own membrane resistance (rm)
and capacitance (cm). All the circuits are connected by
resistors (ri), which represent the axial resistance of the
intracellular cytoplasm, and a short circuit, which repre-
sents the extracellular fluid (Fig. 8B). The voltage re-
sponse in such a passive cable decays exponentially with
distance due to electrotonic conduction (253a). The space
(or length) constant, 
, of axons is defined as the distance
over which a voltage change imposed at one site will drop
to 1/e (37%) of its initial value (Fig. 8C). In fact, the
depolarization at a given distance x from the site of
injection x � 0 is given by Vx � V0/ex/
, where e is the
Euler’s number and 
 is the space or length constant. The
length constant is expressed as 
 � (rm/ri)

1/2. For a cable
with a diameter d, it is therefore expressed as 
 � [(d/
4)(RM/RA)]1/2, where RA is the axial resistance and RM is
the specific membrane resistance (425). Thus the length
constant of the axon depends on three main parameters.
In myelinated axons, RM may reach very high values
because of the myelin sheath. Therefore, space constants
in myelinated axons are very long. For instance, in cat
brain stem neurons, the space constant amounts to 1.7
mm (214). EPSPs generated in the soma are thus detect-
able at long distances in the axon. In thin unmyelinated
axons, the situation was thought to be radically different
because RM is relatively low and the diameter might be
very small. Space constants below 200 �m were consid-
ered in models of nonmyelinated axons (295, 313). The
recent use of whole-cell recordings from unmyelinated
axons (58) profoundly changed this view. In hippocampal
granule cell axons, the membrane space constant for an
EPSP generated in the somato-dendritic compartment is
�450 �m (5; see also sect. VC3). Similarly, the axonal
space constant in L5 pyramidal neurons is also 450 �m
(489). However, these values might be underestimated
because the EPSP is a transient event and the space
constant is inversely proportional to the frequency con-
tent of the signal (468, 489). For instance, the axonal
space constant for slow signals (duration �200 ms) may
reach �1,000 �m in L5 pyramidal cell axons (112).

3. Axonal integration in mammalian neurons

Axonal integration is not peculiar to invertebrate
neurons and synaptic facilitation, produced by depolar-
ization of the presynaptic soma, has been reported in at
least three central synapses of the mammalian brain.
First, at synapses established between pairs of CA3-CA3
pyramidal cells, steady-state depolarization of the presyn-
aptic neuron from �60 to �50 mV enhances synaptic
transmission (460). More recently, an elegant study pub-
lished by Alle and Geiger (5) shows, by using direct
patch-clamp recording from presynaptic hippocampal
mossy fiber boutons, that granule cell axons transmit
analog signals (membrane potential at the cell body) in

FIG. 8. Axonal integration. A: graded control of synaptic efficacy by
the membrane potential in a pair of connected Aplysia neurons. The
hyperpolarization of the presynaptic neuron gradually reduces the am-
plitude of the synaptic potential. [Adapted from Shimahara and Tauc
(487).] B: electrical model of a passive axon. Top: the axon is viewed as
a cylinder that is subdivided into unit lengths. Bottom: each unit length
is considered as a parallel circuit with its membrane resistance (rm) and
capacitance (cm). All circuits are connected intracellularly by resistors
(ri). C: space constant of the axon. Top: schematic representation of a
pyramidal cell with its axon. Bottom: plot of the voltage along the axon.
A depolarization to V0 is applied at the cell body (origin in the plot). The
potential decays exponentially along the axon according to V � V0/eX/
.
The color represents the membrane potential (red is depolarized and
blue is the resting potential). The space constant 
 is defined as the
distance for which V is 37% of V0 (dashed horizontal line on the plot).



addition to action potentials. Surprisingly, excitatory syn-
aptic potentials evoked by local stimulation of the molec-
ular layer in the dentate gyrus could be detected in the
mossy-fiber bouton located at several hundreds microns
from the cell body (Fig. 9). Excitatory presynaptic poten-
tials (EPreSP) recorded in the mossy-fiber bouton repre-
sent forward-propagated EPSPs from granule cell den-
drite. They were not generated locally in the CA3 region
because application of AMPA receptor or sodium channel
blockers locally to CA3 has no effect on the amplitude of
EPreSP (5).

As expected from cable theory, this signal is attenu-
ated and the EPSP waveform is much slower in the ter-
minal than in the soma of granule cells. The salient finding
here is that the space constant of the axon is much wider
(�450 �m) than initially expected. Consistent with prop-
agation of electrical signals over very long distances, the
analog facilitation of synaptic transmission has a slow
time constant (2–4 s; Refs. 291, 382, 489). The functional
consequence is that slow depolarizations of the mem-
brane in somatic and dendritic regions are transmitted to
the axon terminals and can influence the release of trans-
mitter at the mossy fiber-CA3 cell synapse. Similar obser-
vations have been reported in the axon of L5 cortical

pyramidal neurons recorded in whole cell configuration at
distances ranging between 90 and 400 �m (489; Fig. 10A).
In this case, whole cell recording is possible on the axon
because sectioning the axon produces a small enlarge-
ment of its diameter that allows positioning of a patch
pipette. Here again, incoming synaptic activity in the pre-
synaptic neuron propagates down the axon and can mod-
ulate the efficacy of synaptic transmission. The modula-
tion of synaptic efficacy by somatic potential is blocked at
L5-L5 connections (489) or reduced by Ca2� chelators at
the mossy fiber input (5; but see Ref. 468), and may
therefore result from the control of background calcium
levels at the presynaptic terminal (24).

At least one mechanism controlling the voltage-de-
pendent broadening of the axonal action potential has
been recently identified in L5 pyramidal neurons (291,
490). Kv1 channels are expressed at high densities in the
AIS (267), but they are also present in the axon proper.
With cell-attached recordings from the axon at different
distances from the cell body, Kole et al. (291) elegantly
showed that Kv1 channel density increases 10-fold over
the first 50 �m of the AIS but remains at very high values
in the axon proper (�5-fold the somatic density). The
axonal current mediated by Kv1 channels inactivates with
a time constant in the second range (291, 489). Pharma-
cological blockade or voltage inactivation of Kv1 chan-
nels produce a distance-dependent broadening of the ax-
onal spike, as well as an increase in synaptic strength at
proximal axonal terminals (291). For instance, when the
membrane potential is shifted from �80 to �50 mV, the
D-type current is reduced by half (291). Subsequently, the
axonal spike is enlarged and transmitter release is en-
hanced (Fig. 10B). Thus Kv1 channels occupy a strategic
position to integrate slow subthreshold signals generated
in the dendrosomatic region and control the presynaptic
action potential waveform to finely tune synaptic cou-
pling in local cortical circuits.

4. Axonal speeding

The role of the axonal membrane compartment is
also critical in synaptic integration. The group of Alain
Marty (365) showed by cutting the axon of cerebellar
interneurons with two-photon illumination that the ax-
onal membrane speeds up the decay of synaptic poten-
tials recorded in the somatic compartment of cerebellar
interneurons. This effect results from passive membrane
properties of the axonal compartment. In fact, the axonal
compartment acts as a sink for fast synaptic currents. The
capacitive charge is distributed towards the axonal mem-
brane synaptic current, thus accelerating the EPSP decay
beyond the speed defined by the membrane time constant
of the neuron (usually 20 ms). Functionally, axonal speed-
ing has important consequences. EPSP decay is faster
and, consequently, axonal speeding increases the tempo-

FIG. 9. Integration of subthreshold synaptic potential in the axon of
hippocampal granule cells. Electrically evoked synaptic inputs in the
dendrites of a granule cell can be detected in the mossy fiber terminal
(EPreSP). Bottom panel: synaptic transmission at the mossy fiber syn-
apse was facilitated when the simulated EPreSP (“EPreSP”) was asso-
ciated with a presynaptic action potential (AP � “EPreSP”). [Adapted
from Alle and Geiger (5), with permission from the American Associa-
tion for the Advancement of Science.]



ral precision of EPSP-spike coupling by reducing the time
window in which an action potential can be elicited (200,
418).

5. Backward axonal integration

Voltage changes in the somatic compartment modify
release properties at the nerve terminal, and the effect is
reciprocal. Small physiological voltage changes at the
nerve terminal affect action potential initiation (400). In
their recent study, Paradiso and Wu (400) have shown
that small subthreshold depolarizations (�20 mV) of the
calyx of Held produced by current injection or by the
afterdepolarization (ADP) of a preceding action potential
were found to decrease the threshold for action potential
generated by local stimulation 400–800 �m from the
nerve terminal. Conversely, a small hyperpolarization of
the nerve terminal (�15 mV) produced either by current
injection or the AHP increased the threshold for spike
initiation. Thus this elegant study showed for the first
time that axonal membrane, like dendrites, can back-
propagate signals generated in the nerve terminal. Presyn-
aptic GABAA currents originating in the axon have been
recently identified in the cell body of cerebellar interneu-
rons (535). Thus axonal GABAergic activity can probably
influence somatic excitability in these neurons, further

supporting the fact that axonal and somatodendritic com-
partments are not electrically isolated.

The functional importance of axonal integration is
clear, but many questions remain open. The three exam-
ples where hybrid (analog-digital) signaling in the axon
has been observed are glutamatergic neurons [CA3 pyra-
midal neurons (460), granule cells (5), and L5 pyramidal
neurons (291, 489)]. Do axons of GABAergic interneurons
also support hybrid axonal signaling? A study indicates
that this is not the case at synapses established by par-
valbumin-positive fast-spiking cells that display delayed
firing and pyramidal neurons in cortical layer 2–3 (117,
217). However, the equilibrium between excitation and
inhibition probably needs to be preserved in cortical cir-
cuits, and one cannot exclude that hybrid axonal signaling
may exist in other subclasses of cortical or hippocampal
GABAergic interneurons. In cerebellar interneurons,
GABA release is facilitated by subthreshold depolariza-
tion of the presynaptic soma (110). Can inhibitory post-
synaptic potentials spread down the axon, and if so, how
do they influence synaptic release? In dendrites, voltage-
gated channels amplify or attenuate subthreshold EPSPs.
Do axonal voltage-gated channels also influence propaga-
tion of subthreshold potentials? Now that the axons of
mammalian neurons are finally becoming accessible to

FIG. 10. Depolarization of the presynaptic soma facilitates synaptic transmission through axonal integration. A: facilitation of synaptic
transmission in connected L5-L5 pyramidal neurons. Left: experimental design. Synaptic transmission is assessed when presynaptic action potentials
are elicited either from rest (�62 mV) or from a depolarized potential (�48 mV). Right: averaged EPSP amplitude at two presynaptic somatic
membrane potentials. Note the facilitation when the presynaptic potential is depolarized. [Adapted from Shu et al. (489), with permission from Naure
Publishing Group.] B: mechanism of presynaptic voltage-dependent facilitation of synaptic transmission. Top: the cell body and the axon of a cortical
pyramidal neuron are schematized. When an action potential is elicited from the resting membrane potential (RMP, �65 mV), the spike in the axon
is identical in the proximal and distal part of the axon. Postsynaptic inward currents are shown below. Bottom: an action potential elicited from a
steady-state depolarized value of �50 mV is larger in the proximal part of the axon (because ID is inactivated) but unchanged in the distal part
(because ID is not inactivated by the somatic depolarization). As a result, synaptic efficacy is enhanced for the proximal synapse (red inward current)
but not for the distal synapse (blue inward current).



direct electrophysiological recording, we can expect an-
swers to all these questions.

VI. PROPAGATION FAILURES

One of the more unusual operations achieved by
axons is selective conduction failure. When the action
potential fails to propagate along the axon, no signal can
reach the output of the cell. Conduction failure represents
a powerful process that filters communication with post-
synaptic neurons (549). Propagation failures have been
observed experimentally in various axons including ver-
tebrate spinal axons (38, 301), spiny lobster or crayfish
motoneurons (230, 231, 241, 401, 496), leech mechanosen-
sory neurons (28, 29, 234, 541, 572), thalamocortical ax-
ons (151), rabbit nodose ganglion neurons (167), rat dor-
sal root ganglion neurons (335, 336), neurohypophysial
axons (55, 172), and hippocampal pyramidal cell axons
(144, 364, 498). However, some axons in the auditory
pathways are capable of sustaining remarkably high firing
rates, with perfect entrainment occurring at frequencies
of up to 1 kHz (467). Several factors determine whether
propagation along axons fails or succeeds.

A. Geometrical Factors: Branch Points and

Swellings

Although the possibility that propagation may fail at
branch points was already discussed by Krnjevic and
Miledi (301), the first clear indication that propagation is
perturbed by axonal branch points came from the early
studies on spiny lobster, crayfish, and leech axons (230,
231, 401, 496, 497, 541, 572). The large size of invertebrate
axons allowed multielectrode recordings upstream and
downstream of the branch point. For example, in lobster
axons, conduction across the branch point was found to
fail at frequencies above 30 Hz (Fig. 11A, Ref. 230). The
block of conduction occurred specifically at the branch
point because the parent axon and one of the daughter
branches continued to conduct action potentials. Failures
appeared first in the thicker daughter branch, but they
could be also observed in the thin branch at higher stim-
ulus frequency. In the leech, conduction block occurs at
central branch points where fine axons from the periph-
ery meet thicker axons (572). Branch point failures have
been observed or suspected to occur in a number of
mammalian neurons (144, 151, 167).

Propagation failures also occur when the action po-
tential enters a zone with an abrupt change in diameter.
This occurs with en passant boutons (72, 272, 581) but
also when impulses propagating along the axon enter the
soma (12, 185, 336). For instance, in the metacerebral cell
of the snail, propagation failures have been observed
when a spike enters the cell body (Fig. 11B; Ref. 12).

These failures result because the electrical load is signif-
icantly higher on the arriving action potential, and the
current generated by the parent axon is not sufficient to
support propagation (reviewed in Ref. 470). Simulations
show that at geometrical irregularities the propagating
action potential is usually distorted in amplitude and
width, and local conduction velocity can be changed. For
instance, an abrupt increase in axon diameter causes a
decrease in both velocity and peak amplitude of the ac-
tion potential, whereas a step decrease in diameter has
the opposite local effects on these two parameters (221,
226, 272, 337, 338, 348, 349, 403). In fact, the interplay
between the total longitudinal current produced by the

FIG. 11. Propagation failures in invertebrate neurons. A: propaga-
tion failure at a branch point in a lobster axon. The main axon and the
medial and lateral branches are recorded simultaneously. The repetitive
stimulation of the axon (red arrow) at a frequency of 133 Hz produces a
burst of full spike amplitude in the axon and in the lateral branch but not
in the medial branch. Note the electrotonic spikelet in response to the
third stimulation. [Adapted from Grossman et al. (230), with permission
from Wiley-Blackwell.] B: propagation failure at the junction between an
axonal branch and the soma of a snail neuron (metacerebral cell). The
neuron was labeled with the voltage-sensitive styryl dye JPW1114. The
propagation in the axonal arborization was analyzed by the local fluo-
rescence transients due to the action potential. The recording region is
indicated by an outline of a subset of individual detectors, superimposed
over the fluorescence image of the neuron in situ. When the action
potential was evoked by direct stimulation of the soma, it propagated
actively in all axonal branches (red traces). In contrast, when the action
potential was evoked by the synaptic stimulation (EPSP) of the right
axonal branch (Br1), the amplitude of the fluorescent transient declined
when approaching the cell body, indicating a propagation failure (black
traces). [Adapted from Antic et al. (12), with permission from John Wiley
& Sons.]



action potential and the input impedance of the axon
segments ahead of the action potential determines the
fate of the propagating action potential. The case of the
branch point has been studied in detail (219, 221, 583).
The so-called 3/2 power law developed by Rall describes
an ideal relationship between the geometry of mother and
daughter branches (221, 424, 426). A geometrical param-
eter (the geometrical ratio, GR) has been defined as fol-
lows: GR � (d3/2

daughter 1� d3/2
daughter 2)/d3/2

mother, where
d

daughter 1
and ddaughter 2 are the diameters of the daughter

branches and dmother is the diameter of the parent axon.
For GR � 1, impedances match perfectly and spikes

propagate in both branches. If GR � 1, the combined
electrical load of the daughter branches exceeds the load
of the main branch. In other words, the active membrane
of the mother branch may not be able to provide enough
current to activate both branches. If GR � 10, conduction
block occurs in all daughter branches (404). For 1 � GR
� 10, the most common situation by far, propagation past
the branch point occurs with some delay. All these con-
clusions are only true if the characteristics of the mem-
brane are identical, and any change in ion channel density
may positively or negatively change the safety factor at a
given branch point. The amplification of the propagating
action potential by sodium channels in the mossy fiber
bouton is able to counteract the geometrical effects and
speeds up the propagation along the axon (179). Details
on the experimental evaluation of GR at axon branch
points has been reviewed elsewhere (139).

B. Frequency-Dependent Propagation Failures

Depending on the axon type, conduction failures are
encountered following moderate (10–50 Hz) or high-fre-
quency (200–300 Hz) stimulation of the axon. For in-
stance, a frequency of 20–30 Hz is sufficient to produce
conduction failures at the neuromuscular terminal ar-
borization (301) or at the branch point of spiny lobster
motoneurons (230). These failures are often seen as par-
tial spikes or spikelets that are electrotonic residues of
full action potentials. The functional consequences of
conduction failures might be important in vivo. For ex-
ample, in the leech, propagation failures produce an effect
similar to that of sensory adaptation. They represent a
nonsynaptic mechanism that temporarily disconnects the
neuron from one defined set of postsynaptic neurons and
specifically routes sensory information in the ganglion
(234, 339, 541, 572).

What are the mechanisms of frequency-dependent
conduction failure? As mentioned above, the presence of
a low safety conduction point such as a branch point, a
bottleneck (i.e., an axon entering the soma) or an axonal
swelling determines the success or failure of conduction.
However, these geometrical constraints are not sufficient

to fully account for all conduction failures, and additional
factors should be considered. The mechanisms of propa-
gation failure can be grouped in two main categories.

First, propagation may fail during repetitive axon
stimulation as a result of a slight depolarization of the
membrane. At spiny lobster axons, propagation failures
were associated with a 10–15% reduction of the action
potential amplitude in the main axon and a membrane
depolarization of 1–3 mV (230). These observations are
consistent with potassium efflux into the peri-axonal
space induced by repetitive activation. In most cases, the
membrane depolarization produced by external accumu-
lation of potassium ions around the axon probably con-
tributes to sodium channel inactivation. In fact, hyperpo-
larization of the axon membrane or local application of
physiological saline with a low concentration of potas-
sium in the vicinity of a block can restore propagation in
crayfish axons (496). Elevation of the extracellular potas-
sium concentration produced conduction block in spiny
lobster axons (231). However, this manipulation did not
reproduce the differential block induced by repetitive
stimulation, as failures occurred simultaneously in both
branches (230). Interestingly, conduction could also be
restored by the elevation of intracellular calcium concen-
tration. Failures were also induced with a lower threshold
when the electrogenic Na�/K� pump was blocked with
ouabain. Thus differential conduction block could be ex-
plained as follows. During high-frequency activation, po-
tassium initially accumulates at the same rate around the
parent axon and the daughter branches. Sodium and cal-
cium accumulate more rapidly in the thin branch than in
the thick branch because of the higher surface-to-volume
ratio. Thus the Na�/K� pump is activated and extracellu-
lar potassium is lowered, more effectively around the thin
branch (231). Accumulation of extracellular potassium
has also been observed in the olfactory nerve (178) and in
hippocampal axons (416), and could similarly be at the
origin of unreliable conduction.

Propagation failures have also been reported in the
axon of Purkinje neurons under high regimes of stimula-
tion (283, 372; Fig. 12A). In this case, the cell body was
recorded in whole cell configuration, whereas the signal
in the axon was detected in cell-attached mode at a
distance up to 800 �m from the cell body. Propagation
was found to be highly reliable for single spikes at fre-
quencies below 200 Hz (failures were observed above 250
Hz). In physiological conditions, Purkinje cells typically
fire simple spikes well below 200 Hz, and these failures
are unlikely to be physiologically relevant (196). How-
ever, Purkinje cells also fire complex spikes (bursts) fol-
lowing stimulation of the climbing fiber. The instanta-
neous frequency during these bursts may reach 800 Hz
(283, 372). Interestingly, complex spikes did not propa-
gate reliably in Purkinje cell axons. Generally, only the
first and the last spike of the burst propagate. The failure



rate of the complex spike is very sensitive to membrane
potential, and systematic failures occur when the cell
body is depolarized (372). The limit of conduction has not
been yet fully explored in glutamatergic cell axons, but
conduction failures have been reported when a CA3 py-
ramidal neuron fire at 30–40 Hz during a long plateau
potential (362). Thus the conduction capacity seems
much more robust in inhibitory cells compared with glu-
tamatergic neurons. However, this study was based on
extracellular recordings, and the apparent conduction
failures may result from detection problems. In fact, very
few failures were observed with whole cell recordings in

neocortical pyramidal neurons (489). Furthermore, the
robustness of spike propagation along axons of inhibitory
neurons will require further studies.

Propagation failures induced by repetitive stimula-
tion may also result from hyperpolarization of the axon.
Hyperpolarization-induced conduction block has been ob-
served in leech (339, 541, 572), locust (247), and mamma-
lian axons (55, 167). In this case, axonal hyperpolarization
opposes spike generation. Activity-dependent hyperpolar-
ization of the axon usually results from the activation of
the Na�-K�-ATPase and/or the activation of calcium-de-
pendent potassium channels. Unmyelinated axons in the
PNS, for example, vagal C-fibers, hyperpolarize in re-
sponse to repeated action potentials (445, 446) as a result
of the intracellular accumulation of Na� and the subse-
quent activation of the electrogenic Na�/K� pump (42,
445, 446). In crayfish axons, this hyperpolarization may
amount to 5–10 mV (42). The blockade of the Na�-K�-
ATPase with ouabain results in axon depolarization, prob-
ably as a consequence of posttetanic changes in extracel-
lular potassium concentration. In the leech, hyperpolar-
ization-dependent conduction block occurs at central
branch points in all three types of mechanosensory neu-
rons in the ganglion: touch (T), pressure (P), and nocice-
ptive (N) neurons. In these neurons, hyperpolarization is
induced by the Na�-K�-ATPase and by cumulative activa-
tion of a calcium-activated potassium conductance. It is
interesting to note that the conduction state can be
changed by neuromodulatory processes. 5-HT decreases
the probability of conduction block in P and T cells,
probably by a reduction of the hyperpolarization (350).

Hyperpolarization-dependent failures have also been
reported in axons of hypothalamic neurons (from para-
ventricular and supraoptic nuclei) that run into the neu-
rohypophysis. The morphology of their boutons is un-
usual in that their diameter varies between 5 and 15 �m
(581). In single axons, propagation failures are observed
at stimulation rates greater than 12 Hz and are concomi-
tant with a hyperpolarization of 4 mV (55). Here, the
induced hyperpolarization of the neuron results from ac-
tivation of the calcium-dependent BK potassium chan-
nels.

Several recent studies indicate that the hyperpolar-
ization produced by repetitive stimulation could be damp-
ened by hyperpolarization-induced cationic current (Ih)
(42, 498). This inward current is activated at resting mem-
brane potential and produces a tonic depolarization of the
axonal membrane (42). Thus reduction of this current
induces a hyperpolarization and perturbs propagation.
The pharmacological blockade of Ih by ZD-7288 or by
external cesium can in fact produce more failures in
Schaffer collateral axons (498). The peculiar biophysical
properties of Ih indicate that it may limit large hyperpo-
larizations or depolarizations produced by external and
internal accumulation of ions. In fact, hyperpolarization

FIG. 12. Propagation failures in mammalian axons. A: propagation
failures in a Purkinje cell axon. Top: fluorescent image of a Purkinje cell
filled with the fluorescent dye Alexa 488. The locations of the somatic
and axonal recordings are indicated schematically. [Adapted from Mon-
sivais et al. (372).] B: gating of action potential propagation by the
potassium current IA. Left: at resting membrane potential, presynaptic IA

was inactivated and the action potential evoked in the presynaptic cell
propagated and elicited an EPSP in the postsynaptic cell. Right: follow-
ing a brief hyperpolarizing prepulse, presynaptic IA recovered from
inactivation and blocked propagation. Consequently, no EPSP was
evoked by the presynaptic action potential. [Adapted from Debanne et
al. (144), with permission from Nature Publishing Group.]



of the axon will activate Ih, which in turn produces an
inward current that compensates the hyperpolarization
(42). Reciprocally, this compensatory mechanism is also
valid for depolarization by removing basal activation of Ih.
In addition, activity-induced hyperpolarization of the ax-
onal membrane may modulate the biophysical state of
other channels that control propagation.

C. Frequency-Independent Propagation Failures

Action potential propagation in some axon collater-
als of cultured CA3 pyramidal neurons can be gated by
activation of presynaptic A-type K� current, indepen-
dently of the frequency of stimulation (144, 295). Synaptic
transmission between monosynaptically coupled pairs of
CA3-CA3 or CA3-CA1 pyramidal cells in hippocampal
slice cultures can be blocked if a brief hyperpolarizing
current pulse is applied a few milliseconds before the
induction of the action potential in the presynaptic neu-
ron (Fig. 12B). This regulation is observed in synaptic
connections that have no transmission failures, therefore
indicating that the lack of postsynaptic response is the
consequence of a conduction failure along the presynap-
tic axon. In contrast to axonal integration where trans-
mitter can be gradually regulated by the presynaptic mem-
brane potential, transmission is all or none. Interestingly,
failures can also be induced when the presynaptic hyper-
polarizing current pulse is replaced by a somatic IPSP
(144, 295). When presynaptic cells are recorded with a
microelectrode containing 4-aminopyridine (4-AP), a
blocker of IA-like conductances, failures are abolished,
indicating that IA gates action potential propagation (see
also Ref. 389). Because A-channels are partly inactivated
at the resting membrane potential, their contribution dur-
ing an action potential elicited from the resting membrane
potential is minimal, and the action potential propagates
successfully from the cell body to the nerve terminal. In
contrast, A-channels recover from inactivation with a
transient hyperpolarization and impede successful prop-
agation to the terminal.

Propagation failures have been induced in only 30%
of cases (144), showing that propagation is generally re-
liable in hippocampal axons (341, 342, 422). In particular,
IA-dependent conduction failures have been found to oc-
cur at some axon collaterals but not at others (144). With
the use of a theoretical approach, it has been shown that
failures occur at branch points when A-type K� channels
are distributed in clusters near the bifurcation (295). Per-
haps because these conditions are not fulfilled in layer
II/III neocortical neurons (128, 289) and in dissociated
hippocampal neurons (341), this form of gating has not
been reported in these cell types. It would be interesting
to explore the actual distribution of K� channel clusters
near branch points using immunofluorescence methods.

Functionally, this form of gating may determine part
of the short-term synaptic facilitation that is observed
during repetitive presynaptic stimulation. Apparent
paired-pulse facilitation could be observed because the
first action potential fails to propagate but not the second
spike, as a result of inactivation of A-type K� current
(145). A recent study suggests that repetitive burst-in-
duced inactivation of A-type K� channels in the axons of
cortical cells projecting onto accumbens nucleus leads to
short-term synaptic potentiation through an increased re-
liability of spike propagation (98).

VII. REFLECTION OF ACTION POTENTIAL

PROPAGATION

Branch points are usually considered as frequency
filters, allowing separate branches of an axon to activate
their synapses at different frequencies. But another way
that a neuron’s branching pattern can affect impulse prop-
agation is by reflecting the impulse (221, 402, 428). Re-
flection (or reverse propagation) occurs when an action
potential is near failure (221). This form of axonal com-
putation has been well described in leech mechanosen-
sory neurons (Fig. 13A; Refs. 28, 29) in which an unex-
pected event occurs when conduction is nearly blocked:
the action potential that has nearly failed to invade the
thick branch of the principal axon sets up a local potential
that propagates backwards. Reflection occurs because
impulses are sufficiently delayed as they travel through
the branch point. Thus, when the delay exceeds the re-
fractory period of the afferent axon, the impulse will
propagate backwards as well as forwards, creating a re-
flection. This phenomenon can be identified electrophysi-
ologically at the cell body of the P neuron because action
potentials that reflect had a longer initial rising phase (or
“foot”), indicating a delay in traveling through the branch
point. This fast double firing in the thin branch of mecha-
nosensory neurons has important functional conse-
quences. It facilitates synaptic transmission at synapses
formed by this axon and postsynaptic neurons by a mech-
anism of paired-pulse facilitation with the orthodromic
spike and the antidromic action potential that reflected at
the branch point (Fig. 13A). Reflection is not limited to P
cells but also concerns T cells (28). Interestingly, the
facilitation of synaptic transmission also affects the chem-
ical synapse between the P cell and the S neuron, a
neuron that plays an essential role in sensitization, a
nonassociative form of learning (29).

Reflected propagation is not restricted to mechano-
sensory neurons of the leech but has also been noted in
the axon of an identified snail neuron (12). Reflection has
not yet been definitively reported in mammalian axons
(270), but it has been demonstrated in dendrites. In mitral
cells of the mammalian olfactory bulb, both conduction



FIG. 13. Reflection of action potentials. A: reflection and conduction block produce multilevel synaptic transmission in mechanosensory 
neurons of the leech. Left column: an action potential initiated by anterior minor field stimulation invades the whole axonal arborization (red) 
and evokes an EPSP in all postsynaptic cells. Middle column: following repetitive stimulation, the cell body is slightly hyperpolarized (orange) 
and the same stimulation induces a reflected action potential at the branch point between the left branch and the principal axon. The reflected 
action potential (pink arrow 2) stimulates the presynaptic terminal on postsynaptic cell 1 twice, thus enhancing synaptic transmission (arrow). 
Right column: when the cell body is further hyperpolarized (blue), the stimulation of the minor field now produces an action potential that 
fails to propagate at the branch point. The failed spike is seen as a spikelet at the cell body (upward arrow). No postsynaptic response is 
evoked in postsynaptic cell 2 (downward arrow). [Adapted from Baccus et al. (28, 29).] B: reflection of action potential propagation in the 
presynaptic dendrite of the mitral cell. The dendritic and somatic compartments are recorded simultaneously. An action potential (1) initiated 
in the dendrite (d) fails to propagate towards the soma (s, dotted trace), is then regenerated at the soma (2), and propagates back to the 
dendrite, thus producing a double dendritic spike (thick trace in the inset). The asterisk marks the failing dendro-somatic spike. [Adapted 
from Chen et al. (108).]



failures (107) and reflection (108) have been observed for
impulses that are initiated in dendrites (Fig. 13B). Propa-
gation in dendrites of mitral cells is rather unusual com-
pared with classical dendrites. Like axons, it is highly
active, and no decrement in the amplitude of the AP is
observed between the soma and the dendrite (60). In
addition, mitral cell dendrites are both pre- and postsyn-
aptic elements. “Ping-pong” propagation has been ob-
served following near failure of dendritic action poten-
tials evoked in distal primary dendrites (108). Forward
dendritic propagation of an action potential can be
evoked by an EPSP elicited by a strong stimulation of the
glomerulus. This particular form of propagation may fail
near the cell body when the soma is slightly hyperpolar-
ized. For an intermediate range of membrane potential,
the action potential invades the soma and may trigger a
back-propagating AP, which is seen as a dendritic double
spike in the primary dendrite. The function of reflected
propagation is not yet definitively established, but when
axonal output is shut down by somatic inhibition, the
primary dendrite of the mitral cell may function as a local
interneuron affecting its immediate environment. Reflec-
tion of fast action potentials has also been observed in
dendrites of retinal ganglion cells (544).

VIII. SPIKE TIMING IN THE AXON

A. Delay Imposed by Axonal Length

Axonal conduction introduces a delay in the propa-
gation of neuronal output, and axonal arborization might
transform a temporal pattern of activity in the main axon
into spatial patterns in the terminals (113). Axonal delay
initially depends on the velocity of the action potential in
axons (generally between 0.1 m/s in unmyelinated axons
and 100 m/s in large myelinated axons) which directly
results from the diameter of the axon and the presence of
a myelin sheath. Axonal delays may have crucial func-
tional consequences in the integration of sensory infor-
mation. In the first relay of the auditory system of the barn
owl, differences in the axonal conduction delay from each
ear, which in this case depends on the differences in
axonal length, produce sharp temporal tuning of the bin-
aural information that is essential for acute sound local-
ization (Fig. 14A; Refs. 95, 96, 358).

What is the functional role of axonal delay in network
behavior? Theoretical work shows that synchronization
of cortical columns and network resonance both depend

FIG. 14. Axonal propagation and spike
timing. A: delay lines in the auditory system
of the barn owl. Each neuron from the nu-
cleus laminaris receives an input from each
ear. Note the difference in axonal length
from each side. [Adapted from Carr and
Konishi (96).] B: comparison of the delay of
propagation introduced by a branch point
with GR � 1 (dashed traces) versus a branch
point with perfect impedance matching (GR
� 1, continuous traces). Top: schematic
drawing of a branched axon with 3 points of
recording. At the branch point with GR � 8,
the shape of the action potential is distorted
and the propagation displays a short latency
(�t). [Adapted from Manor et al. (349).] C:
propagation failures in hippocampal cell ax-
ons are associated with conduction delays.
The presynaptic neuron was slightly hyper-
polarized with constant current to remove
inactivation of the A-current (IA). A presyn-
aptic action potential induced with a short
delay after onset of the depolarizing pulse
did not elicit an EPSC in the postsynaptic
cell because of the large activation of IA.
Increasing the delay permitted action poten-
tial propagation because IA was reduced dur-
ing the action potential. For complete inac-
tivation of IA (bottom pair of traces), latency
decreased. [Adapted from Debanne et al.
(144), with permission from Nature Publish-
ing Group.]



on axonal delay (87, 344). A recent theoretical study
emphasizes the importance of axonal delay in the emer-
gence of poly-synchronization in neural networks (271).
In most computational studies of storage capacity, axonal
delay is totally ignored, but in fact, the interplay between
axonal delays and synaptic plasticity based on timing
(spike-timing-dependent plasticity, STDP) generates the
emergence of polychronous groups (i.e., strongly inter-
connected groups of neurons that fire with millisecond
precision). Most importantly, the number of groups of
neurons that fire synchronously exceeds the number of
neurons in a network, resulting in a system with massive
memory capacity (271).

However, differences in axonal delay may be erased
to ensure synchronous activity. A particularly illustrative
example is given by the climbing fiber inputs to cerebellar
Purkinje cells. Despite significant differences in the length
of individual olivocerebellar axons, the conduction time is
nearly constant because long axons are generally thicker.
Thus this compensatory mechanism allows synchronous
activation of Purkinje cells with millisecond precision
(518). Similarly, the eccentricity of X-class retinal gan-
glion cells within the retina is compensated by their con-
duction velocity to produce a nearly constant conduction
time (507). Thus, regardless of the geometrical con-
straints imposed by retinal topography, a precise spatio-
temporal representation of the retinal image can be main-
tained in the visual relay.

B. Delays Imposed by Axonal Irregularities and

Ion Channels

In addition to this axonal delay, local changes in the
geometry of the axon produce an extra delay. The presence
of axonal irregularities such as varicosities and branch
points reduces conduction velocity (Fig. 14B). This reduc-
tion in conduction velocity occurs as a result of a high
geometrical ratio (GR; see sect. VIA). The degree of tempo-
ral dispersion has been simulated in the case of an axon
from the somatosensory cortex of the cat (349). The delay
introduced by high GR branch points could account for a
delay of 0.5–1 ms (349). But this extra delay appears rather
small compared with the delay imposed by the conduction
in axon branches with variable lengths (in the range of 2–4
ms).

A third category of delay in conduction can be intro-
duced during repetitive stimulation or during the activa-
tion of specific ion channels. Thus the magnitude of this
delay is usually variable. It has been measured in a few
cases. In lobster axons, the conduction velocity of the
axon was lowered by �30% following repetitive stimulation
(231). In dorsal root ganglion neurons, the latency of con-
ducted spikes was found to be enhanced by �1 ms following
antidromic paired-pulse stimulation of the axon (336). Com-

putational studies indicate that this delay may also result
from a local distortion of the action potential shape. Activity-
dependent delays may have significant consequences on
synaptic transmission. For instance, the synaptic delay was
found to increase by 1–2 ms during repetitive stimulation of
crayfish motor neurons (241). Monosynaptic connections to
motoneurons show an increase in synaptic latency concom-
itant with the synaptic depression induced by repetitive
stimulation at 5–10 Hz, which induced near-propagation fail-
ures (510). Similarly, a longer synaptic delay has been mea-
sured between connected hippocampal cells when conduc-
tion nearly fails, due to reactivation of A-type potassium
channels (Fig. 14C; Ref. 144). Thus axonal conduction may
introduce some noise into the temporal pattern of action
potentials produced at the initial segment. At the scale of a
nerve, delays in individual axons introduce a temporal dis-
persion of conduction, suggesting a stuttering model of
propagation (374).

Synaptic timing at L5-L5 or CA3-CA3 unitary connec-
tions is largely determined by presynaptic release probabil-
ity (70). Synaptic latency is inversely correlated with the
amplitude of the postsynaptic current, and changes in syn-
aptic delay in the range of 1–2 ms are observed during
paired-pulse and long-term plasticity involving regulation of
presynaptic release (70). Probability of transmitter release is
not the only determinant of synaptic timing, however. The
waveform of the axonal spike also plays a critical role. The
enlargement of the axonal spike by a Kv channel blocker
significantly prolongs synaptic latency at L5-L5 synapses
(71). The underlying mechanism results from the shift in the
presynaptic calcium current. Because the presynaptic action
potential overshoots at approximately �50 mV, the calcium
current develops essentially during the repolarizing phase of
the presynaptic spike (23, 59, 279, 328, 454). Thus the spike
broadening produced by 4-AP delays the calcium current
and subsequently shifts glutamate release towards longer
latencies. Physiologically, spike broadening in the axon may
occur when Kv channels are inactivated during repetitive
axonal stimulation and may participate in the stabilization of
synaptic delay (71).

The probabilistic nature of voltage-gated ion channels
(i.e., channel noise) may also affect conduction time along
fibers below 0.5 �m diameter. A simulation study indicates
that four distinct effects may corrupt propagating spike
trains in thin axons: spikes being added, deleted, jittered, or
split into subgroups (186). The local variation in the number
of Na� channels may cause microsaltatory conduction.

C. Ephaptic Interactions and Axonal Spike

Synchronization

Interactions between neighboring axons were first
studied by Katz and Schmitt (280, 281) in crab. The pas-
sage of an impulse in one axonal fiber produced a sub-



threshold change in excitability in the adjacent fiber. As
the action potential approaches in the active axon, the
excitability of the resting fiber was first reduced, and then
quickly enhanced (280, 288). This effect results from the
depolarization of the resting axon by the active axon
because it generates locally an extracellular potential of a
few millivolts. Interactions of this type are called ephaptic
(from the Greek for “touching onto,” Ref. 20). They are
primarily observed when the extracellular conductance is
reduced (37, 280). This condition is fulfilled, for instance,
in bundles of unmyelinated axons where the periaxonal
space is minimal, as in olfactory nerves (62, 68). Ephaptic
interactions between axons have also been observed in
frog sciatic nerve (288) and in demyelinated spinal axons
of dystrophic mice (436).

One of the most interesting features of ephaptic in-
teraction between adjacent axons is that the conduction
velocity in neighboring fibers might be unified, thus syn-
chronizing activity in a bundle of axons. If one action
potential precedes the other by a few milliseconds, it
accelerates the conduction rate of the lagging action po-
tential in the other axon (37, 280; Fig. 15). This phenom-
enon occurs because the ephaptic potential created in the
adjacent fiber is asymmetrical. When the delay between
the two spikes is small (�1–2 ms; Ref. 37), the depolar-
izing phase of the ephaptic potential facilitates spike gen-
eration and increases conduction velocity. However, per-
fectly synchronized action potentials decrease the con-
duction velocity in both branches because of the initial
hyperpolarizing phase of the ephaptic potentials. Syn-
chronization can only occur if the individual velocities
differ only slightly and are significant for a sufficient
axonal length (280). Does such synchronization also oc-
cur in mammalian axons? There is no evidence for this
yet, but modeling studies indicate that the relative loca-
tion of nodes of Ranvier on two adjacent myelinated
axons might also determine the degree of temporal syn-
chrony between fibers (57, 440). On small unmyelinated
axons, ephaptic interaction between axons is predicted to
be very small (254), but future research in this direction
might reveal a powerful means to thoroughly synchronize
neuronal activity downstream of the site of action poten-
tial initiation.

D. Electric Coupling in Axons and Fast

Synchronization

Fast communication between neurons is not only
ensured by chemical synapses, but electrical coupling has
been reported in a large number of cell types including
inhibitory cortical interneurons (249). In the hippocam-
pus, one type of high-frequency oscillation (100–200 Hz)
called “ripple” arises from the high-frequency firing of
inhibitory interneurons and phase-locked firing of many

CA1 neurons (533). Some of the properties of ripple os-
cillation are, however, difficult to explain. First, the oscil-
lations are so fast (near 200 Hz) that synchrony across
many cells would be difficult to achieve through chemical
synaptic transmission. In addition, ripples persist during
pharmacological blockade of chemical transmission in
vitro (162). While some inhibitory interneurons may syn-
chronize a large number of pyramidal cells during the
ripple (286), a significant part of the synchronous activity
could be mediated by axo-axonal electrical synaptic con-
tacts through gap junctions (464). Antidromic stimulation
of a neighboring axon elicits a small action potential, a
spikelet with a fast rate of rise (near 180 mV/ms). Spike-
lets can be evoked at the rate of a ripple (200 Hz), and
they are blocked by TTX or by the gap junction blocker

FIG. 15. Ephaptic interaction in axons. A: local circuit diagram in a
pair of adjacent axons. The red area indicates the “active region.” The
action currents produced by the action potential penetrates the inactive
axon. B: schematic representation of resynchronization of action poten-
tials in a pair of adjacent axons. While the spikes propagate along the
axons, the initial delay between them becomes reduced. [Adapted from
Barr and Plonsey (37) and Katz and Schmitt (280).]



carbenoxolone. Simultaneous recording from the axon
and cell body showed that the spikelet first traversed the
axon prior to invading the soma and the dendrites. Fi-
nally, the labeling of pyramidal neurons with rhodamine,
a small fluorescent molecule, showed dye coupling in
adjacent neurons that was initiated through the axon
(464). Thus the function of the axon is not limited to the
conduction of the impulses to the terminal, and informa-
tion may process between adjacent pyramidal neurons
through electrical synapses located close to their axon
hillock.

A similar mechanism of electrical coupling between
proximal axons of Purkinje cells is supposed to account
for very fast oscillations (�75 Hz) in the cerebellum. Very
fast cerebellar oscillations recorded in cerebellar slices
are indeed sensitive to gap junction blockers (368). In
addition, spikelets and fast prepotentials eliciting full
spikes are observed during these episodes. In fact, the
simulation of a cerebellar network where Purkinje cells
are sparsely linked though axonal gap junctions replicates
the experimental observations (534).

Cell-cell communication through axons of CA1 pyra-
midal neurons has recently been suggested in vivo (181).
Using the newly developed technique of in vivo whole cell
recording in freely moving rats (321, 322, 352), the group
of Michael Brecht found that most records from CA1 cells
(�60%) display all-or-none events, with electrophysiolog-
ical characteristics similar to spikelets resulting from
electrical coupling in the axon. These events have a fast
rise time (�1 ms) and a biphasic decay time. They occur
during ripples as bursts of three to six events (181).

IX. ACTIVITY-DEPENDENT PLASTICITY OF

AXON MORPHOLOGY AND FUNCTION

A. Morphological Plasticity

The recent development of long-term time lapse im-
aging in vitro and in vivo (255) has revealed that axon
morphology is highly dynamic. Whereas the large-scale
organization of the axonal arborization remains fairly sta-
ble over time in adult central neurons, a subset of axonal
branchlets can undergo impressive structural rearrange-
ments in the range of a few tens of micrometers (review
in Ref. 256). These rearrangements affect both the num-
ber and size of en passant boutons as well as the com-
plexity of axonal arborization. For instance, the hip-
pocampal mossy fiber terminals are subject to dramatic
changes in their size and complexity during in vitro de-
velopment and in the adult in vivo following exposure to
enriched environment (203, 204, 216). The turnover of
presynaptic boutons in well identified Schaffer collateral
axons is increased following induction of LTD in vitro
(44). Finally, in an in vitro model of traumatic epilepsy,

transection between the CA3 and CA1 region induces
axonal sprouting associated with an increase in the den-
sity of boutons per unit length (360).

Axonal reorganization has also been reported in vivo.
In the visual cortex, a subset of geniculo-cortical axonal
branches can undergo structural rearrangements during
development (14) and in the adult (508) or following
activity deprivation (239, 240, 554). Similar observations
have been reported in the barrel cortex during develop-
ment (417) and in the adult mice (137). However, one
should note that the magnitude of axonal rearrangements
is much larger during the critical period of development.
In the adult mice cerebellum, transverse, but not ascend-
ing branches of climbing fibers are dynamic, showing
rapid elongation and retraction (383). The motility of
axonal branches is clearly demonstrated in all these stud-
ies, and it certainly reflects dynamic rewiring and func-
tional changes in cortical circuits. Neuronal activity
seems to play a critical role in the motility of the axon, but
the precise mechanisms are not clearly understood. For
instance, stimulation of the axon freezes dynamic
changes in cerebellar climbing fibers in vivo (383). Simi-
larly, the fast motility of axonal growth cone of hippocam-
pal neurons in vitro is reduced by stimulation of GluR6
kainate receptors or electrical stimulation and depends
on axonal calcium concentration (266). In contrast, the
slow remodeling of local terminal arborization complexes
of the mossy fiber axon is reduced when Na� channel
activity is blocked with TTX (204).

Electrical activity not only determines axon morphol-
ogy but also controls induction of myelination in devel-
oping central and peripheral axons. For instance, block-
ade of Na� channel activity with TTX reduces the number
of myelinated segment and the number of myelinating
oligodendrocytes, whereas increasing neuronal excitabil-
ity has the opposite effects (149). In contrast, electrical
stimulation of dorsal root ganglion neurons delays myelin
formation (509). In this case, ATP released by active
axons is subsequently hydrolyzed to adenosine that stim-
ulates adenosine receptors in Schwann cells and freezes
their differentiation. Neuronal activity is also thought to
determine the maintenance of the myelin sheath in adult
axons. In the hindlimb unloading model, myelin thickness
is tightly controlled by motor activity (93). Myelin is thin-
ner in axons controlling inactive muscles but thicker in
hyperactive axons.

B. Functional Plasticity

Beyond morphological rearrangements, the axon is
also able to express many forms of functional plasticity
(520, 557). In fact, several lines of evidence suggest that
ion channel activity is highly regulated by synaptic or
neuronal activity (reviews in Refs. 135, 493, 582). There-



fore, some of the axonal operations described in this
review could be modulated by network activity. Axonal
plasticity can be categorized into Hebbian and homeo-
static forms of functional plasticity according to the ef-
fects of the induced changes in neuronal circuits. Hebbian
plasticity usually serves to store relevant information and
to some extent destabilizes neuron ensembles, whereas
homeostatic plasticity is compensatory and stabilizes net-
work activity within physiological bounds (420, 539).

1. Hebbian plasticity of axonal function

There are now experimental facts suggesting that
Hebbian functional plasticity exists in the axon. For in-
stance, the repetitive stimulation of Schaffer collateral
axons at 2 Hz leads to a long-lasting lowering of the
antidromic activation threshold (361). Although the pre-
cise expression mechanisms have not been characterized
here, this study suggests that axonal excitability is persis-
tently enhanced if the axon is strongly stimulated. Fur-
thermore, LTP and LTD are respectively associated with
increased and decreased changes in intrinsic excitability
of the presynaptic neuron (205, 324). These changes imply
retrograde messengers that target the presynaptic neuron.
Although these changes are detected in the cell body, the
possibility that ion channels located in the axon are also
regulated cannot be excluded. Two parallel studies have
recently reported a novel form of activity-dependent plas-
ticity in a subclass of inhibitory interneurons of the cortex
and hippocampus containing neuropeptide Y (476, 523).
Stimulation of the interneuron at 20–40 Hz leads to an
increase in action potential firing lasting several minutes.
In both studies, the persistent firing is consistent with the
development of an ectopic spike initiation zone in the
distal region of the axon.

2. Homeostatic axonal plasticity

The expression of axonal channels might be regu-
lated by chronic manipulation of neuronal activity accord-
ing to the homeostatic scheme of functional plasticity.
For instance, blocking neuronal activity by TTX enhances
both the amplitude of the transient Na� current (150) and
the expression of Na� channels in hippocampal neurons
(16). Although the subcellular distribution of Na� chan-
nels was not precisely determined in these studies, they
might be upregulated in the axon. Indeed, axon regions
that become silent because of acute demyelination ex-
press a higher density of Na� channels which eventually
allows recovery of active spike propagation (69, 195, 555).
Activity deprivation not only enhances intrinsic excitation
but also reduces the intrinsic neuronal brake provided by
voltage-gated K� channels (131, 141, 150). Chronic inac-
tivation of neuronal activity with TTX or synaptic block-
ers inhibits the expression of Kv1.1, Kv1.2, and Kv1.4
potassium channels in the cell body and axon of cultured

hippocampal neurons (229). Although the functional con-
sequences were not analyzed here, this study suggests
that downregulation of Kv1 channels would enhance neu-
ronal excitability and enlarge axonal spike width.

The position of the AIS relative to the cell body is
also subject to profound activity-dependent reorganiza-
tion (Fig. 16A). In a recent study, Grubb and Burrone (232,
233) showed that brief network-wide manipulation of
electrical activity determines the position of the AIS in
hippocampal cultured neurons. The AIS identified by its
specific proteins ankyrin-G and �-IV-spectrin is moved up
to 17 �m distally (i.e., without any change in the AIS
length) when activity is increased by high external potas-

FIG. 16. Activity-dependent plasticity of AIS. A: scheme of the
homeostatic regulation of AIS location in cultured hippocampal neurons
(left) and in brain stem auditory neurons (right). AIS is moved distally
following chronic elevation of activity by high external K� or photo-
stimulation of neurons expressing the light-activated cation channel
channelrhodopsin 2 (ChR2) (left). AIS length is augmented in chick
auditory neurons following cochlea removal (right). B: ankyrin G label
in control neurons and in neurons treated with 15 mM K� during 48 h
(scale bar: 20 �m). [From Grubb and Burrone (232), with permission
from Nature Publishing Group.] C: AIS plasticity in chick auditory
neurons. Sodium channels have been immunolabeled with pan-Na chan-
nel antibody. Neurons from deprived auditory pathway display longer
AIS (right) than control neurons (left). [From Kuba et al. (304), with
permission from Nature Publishing Group.]



sium or illumination of neurons transfected with channel-
rhodopsin-2 during 48 h (232; Fig. 16B). The relocation of
the AIS is reversible and depends on T- and L-type cal-
cium channels, suggesting that intra-axonal calcium may
control the dynamic of the AIS protein scaffold. This
bidirectional plasticity might be a powerful means to
adjust the excitability of neurons according to the homeo-
static rule of plasticity (539). In fact, neurons with prox-
imal AIS are generally more excitable than those with
distal AIS, suggesting that shifting the location of the AIS
distally elevates the current threshold for action potential
generation (232, 298). Thus these data indicate that AIS
location is a mechanism for homeostatic regulation of
neuronal excitability.

Homeostatic AIS plasticity might be a general rule
and may account for the characteristic frequency-depen-
dent distribution of sodium channels along the axon of
chick auditory neurons (302, 303). In neurons that pref-
erentially analyze high auditory frequencies (�2 kHz),
sodium channels are clustered at 20–50 �m from the
soma, whereas they are located in the proximal part of the
axon in neurons that detect lower auditory frequencies
(�600 Hz; Ref. 302). A recent study from Kuba and co-
workers (304) directly demonstrates the importance of
afferent activity in AIS position in chick auditory neurons.
Removing cochlea in young chicks produces an elonga-
tion of the AIS in nucleus magnocellularis neurons with-
out affecting its distance from the cell body (Fig. 16C; Ref.
304). This regulation is associated with a compatible in-
crease in the whole cell Na� currents.

Axonal excitability is also homeostatically tuned on
short-term scales. Sodium channel activity is downregu-
lated by many neuromodulators and neurotransmitters
including glutamate that classically enhances neuronal
activity (92, 94). Although further studies will be required
to precisely determine the location of the regulated Na�

channels, it is nevertheless tempting to speculate that AIS
excitability might be finely tuned.

X. PATHOLOGIES OF AXONAL FUNCTION

Beyond Wallerian degeneration that may be caused
by axon sectioning, deficits in axonal transport (121, 138),
or demyelination (381), the axon is directly involved in at
least two large families of neurological disorders. Neuro-
logical channelopathies such as epilepsies, ataxia, pain,
myotonia, and periodic paralysis usually result from dys-
function in ion channel properties or targeting (130, 306,
409, 461). The major consequences of these alterations
are dysfunctions of neuronal excitability and/or axonal
conduction (297). In addition, some forms of Charcot-
Marie-Tooth disease affect primarily the axon (297, 367,
519). They mainly lead to deficits in axonal propagation
(297, 519).

A. Axonal Diseases Involving Ion Channels

1. Epilepsies

Many ion channels expressed in the axons of cortical
neurons are mutated in human epilepsies, and dysfunc-
tion of the AIS is often at the origin of epileptic pheno-
types (562). For instance, mutations of the gene SCN1A

encoding Nav1.1 cause several epileptic phenotypes in-
cluding generalized epilepsy with febrile seizure plus
(GEFS�) and severe myoclonic epilepsy of infancy
(SMEI) (39, 114, 182; Fig. 17). Some of these mutations do
not produce a gain of function (i.e., hyperexcitability) as
expected in the case of epilepsy, but rather a loss of
function (505). Since Nav1.1 channels are highly ex-
pressed in the axons of GABAergic neurons (394), a de-
crease in excitability in inhibitory neurons will enhance
excitability of principal neurons that become less inhib-
ited. Mice lacking SCN1A display spontaneous seizures
because the sodium current is reduced in inhibitory in-
terneurons but not in pyramidal cells (576). Similarly,
deletions or mutations in Kv1.1 channels produce epi-

FIG. 17. Axonal channelopathies in cortical circuits. The possible
roles of axonal ion channels implicated in epilepsy are illustrated sche-
matically. Mutations in Nav1.1 from axons of GABAergic interneurons
produce a loss of Na-channel function (i.e., reduced excitability of
inhibitory interneurons but increased network activity) that might un-
derlie epilepsy with febrile seizure plus (GEFS�) or severe myoclonic
epilepsy of infancy (SMEI). Mutations in Kv7.2/7.3 channels lead to a
loss of function (i.e., an increase in excitability of principal neurons) and
may result in benign familial neonatal convulsions (BFNC). Deletions or
mutations in Kv1.1 increase neuronal excitability and produce episodic
ataxia type 1.



lepsy (495) and episodic ataxia type 1 (EA1), character-
ized by cerebellar incoordination and spontaneous motor-
unit activity (80). Mutations in KCNQ2/3 (Kv7.2/Kv7.3)
channels produce several forms of epilepsy such as be-
nign familial neonatal convulsions (BNFC; Refs. 406, 466,
492; Fig. 17). Some mutations may also target ion chan-
nels located in axon terminals. For instance, a missense
mutation in the KCNMA1 gene encoding BK channels is
associated with epilepsy and paroxysmal dyskinesia (164;
Fig. 15).

Epilepsies may also be acquired following an initial
seizure. For instance, many epileptic patients display
graduated increases in the frequency and strength of their
crises, indicating that epilepsy might be acquired or mem-
orized by neuronal tissue. The cellular substrate for this
enhanced excitability is thought to be long-lasting poten-
tiation of excitatory synaptic transmission (32, 146), but
enhanced neuronal excitability might be also critical (43,
50, 64, 517). These changes in excitability are generally
proepileptic, but additional work will be required to de-
termine whether axonal channels specifically contribute
to acquired epilepsy phenotypes.

In addition to epilepsy, mutations in the SCNA1A or
CACNA1A gene can also lead to cases of familial hemi-
plegic migraine; these mutations have mixed effects when
studied in expression systems that could explain how
they concur to cortical spreading depression (103, 408).

2. Axonal channelopathies in the PNS

Mutations in axonal channels may be involved in
several diseases that affect the PNS. For instance, pain
disorders are often associated with mutations of the
SCN9A gene encoding the alpha subunit of Nav1.7, that
cause either allodynia (i.e., burning pain; Refs. 189, 571)
or analgesia (129). Pain is usually associated with a gain
of function of Nav1.7 (i.e., lower activation threshold or
reduced inactivation; Refs. 189, 238).

B. Axonal Diseases Involving Myelin

1. Multiple sclerosis

Multiple sclerosis (MS) is characterized by multiple
attacks on CNS myelin that may lead to sensory (princi-
pally visual) and/or motor deficits (532, 555). MS is gen-
erally diagnosed in the young adult (before 40), and the
progression of the disease often alternates phases of pro-
gression and remission where the patient recovers be-
cause compensatory processes occur, such as Na� chan-
nel proliferation in the demyelinated region (555). Al-
thought the etiology of MS is multiple with hereditary,
infectious, and environmental factors, the most important
determinant of MS is dysregulation of the immune system
including autoimmune diseases directed against myelin

proteins. The main consequence is a partial or total loss of
myelin that prevents axonal conduction in axons of the
optic nerves or corticospinal tracts.

2. Charcot-Marie-Tooth disease

Charcot-Marie-Tooth (CMT) disease affects myelin of
PNS axons and constitutes a highly heterogeneous group
of genetic diseases. These diseases generally invalidate
molecular interactions between axonal and glial proteins
that stabilize myelin produced by Schwann cells. The
most frequent forms, CMT1A, CMT1B, and CMT1X, are
caused by mutations in genes which encode three com-
ponents of the myelin sheath, peripheral myelin pro-
tein-22 (PMP22), myelin protein zero (MPZ), and con-
nexin 32, respectively (519).

3. Hereditary neuropathy with liability to pressure

palsies

Hereditary neuropathy with liability to pressure pal-
sies (HNPP) is a genetic disease that results from a defi-
ciency in the gene coding for PMP22 (104). HNPP is
characterized by focal episodes of weakness and sensory
loss and is associated with abnormal myelin formation
leading to conduction blocks (31).

XI. CONCLUDING REMARKS

A. Increased Computational Capabilities

Axons achieve several fundamental operations that
go far beyond classical propagation. Like active dendrites,
axons amplify and integrate subthreshold and suprath-
reshold electrical signals (5, 144, 179, 291, 489). In addi-
tion, the output message can be routed in selective axonal
pathways at a defined regime of activity. The conse-
quences of this are not yet well understood in mammalian
axons, but branch point failures may participate in the
elaboration of sensory processing in invertebrate neurons
(234). Axonal propagation may also bounce back at a
branch point or at the cell body, but at present, there are
only a handful of examples showing reflected propagation
(12, 28, 29, 108). Reflected impulses may limit the spread
of the neuronal message and enhance synaptic transmis-
sion. Theoretical and experimental studies indicate that
reflection of action potentials could occur in axons that
display large swellings or a branch point with high GR.
Moreover, axonal delay is important to set network res-
onance (344) and increase storage capacity in neuronal
networks (271). Finally, axonal coupling through ephaptic
interactions or gap junctions may precisely synchronize
network activity (448, 464). All these operations increase
the computational capabilities of axons and affect the



dynamics of synaptic coupling. Many pieces of the puzzle
are, however, still missing.

The computational capabilities of axons might be
further extended by another unexpected and important
feature: their capacity to express both morphological and
functional plasticity. There is now evidence for Hebbian
and homeostatic long-term axonal plasticities that might
further enhance the computational capacity of the cir-
cuits (232, 233, 304). Thus activity-dependent plasticity is
not restricted to the input side of the neuron (i.e., its
dendrites and postsynaptic differentiation), but it may
also directly involve axonal function.

B. Future Directions and Missing Pieces

In the recent past, most (if not all) of our knowledge
about axonal computation capabilities was derived from
experiments on invertebrate neurons or from computer
simulations (470). The use of paired-recording techniques
(140, 144) and the recent spread of direct patch-clamp
recordings from the presynaptic terminal (5, 58, 179, 432)
or from the axon (259, 291, 292, 488–490) suggest that the
thin mammalian axon will yield up all its secrets in the
near future. There are good reasons to believe that, com-
bined with the development of high-resolution imaging
techniques like multiphoton confocal microscopy (128,
193, 194, 289), second-harmonic generation microscopy
(160) and voltage-sensitive dyes (12, 74, 196, 215, 228, 327,
396, 397, 580), this technique will be a powerful tool to
dissect the function of axons. Development of nanoelec-
tronic recording devices will also probably offer promis-
ing solutions to solve the problem of intracellular record-
ing from small-diameter axons (530).

Axonal morphology and the subcellular localization
of ion channels play crucial roles in conduction proper-
ties and propagation failures or reflected propagation may
result from the presence of axonal irregularities such as
varicosities and branch points. However, detailed quanti-
tative analysis of the morphometry of single axons com-
bined with the quantitative immunostaining of sodium
channels as used recently by Lorincz and Nusser (333)
will be needed. The use of recently developed molecular
tools to target defined channel subunits towards specific
axonal compartments could be of great help in determin-
ing their role in axonal propagation.

Fine temporal tuning can be achieved by axons. Dif-
ferences in axonal length in the terminal axonal tuft in-
troduce delays of several milliseconds. Is temporal scal-
ing of action potential propagation in the axonal arboriza-
tion relevant to the coding of neuronal information?
Differential conduction delays in axonal branches partic-
ipate in precise temporal coding in the barn owl auditory
system (95, 96, 358). But the role of axonal delays has only
been studied in artificial neural networks (87, 271, 344) or

in vitro neuronal circuits (33), and additional work will
have to be done to describe its implication in hybrid (i.e.,
neuron-computer) or in in vivo networks. Furthermore,
understanding the conflict faced by cortical axons be-
tween space (requirement to connect many different post-
synaptic neurons) and time (conduction delay that must
be minimized) will require further studies (83).

Local axonal interactions like ephaptic coupling and
gap-junction coupling allow very fast synchronization of
activity in neighboring neurons. Surprisingly, little exper-
imental effort has been devoted to ephaptic interactions
between axons. This mechanism represents a powerful
means to precisely synchronize output messages of neigh-
boring neurons. Perhaps ephaptic interactions between
parallel axons could compensate the “stuttering conduc-
tion” that is introduced by axonal varicosities and branch
points (374). The implications of these mechanisms in
synchronized activity will have to be determined in axons
that display favorable geometrical arrangement for ep-
haptic coupling (i.e., fasciculation over a sufficient axonal
length). Callosal axons, mossy fibers, and Schaffer collat-
erals are possible candidates.

In conclusion, we report here evidence that beyond
classical propagation many complex operations are
achieved by the axon. The axon displays a high level of
functional flexibility that was not expected initially. Thus
it may allow a fine tuning of synaptic strength and timing
in neuronal microcircuits. There are good reasons to be-
lieve that after the decade of the dendrites in the 1990s, a
new era of axon physiology is now beginning.
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