S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-944366476, 1974.

E. Maupas, Modes et formes de reproduction des nematodes, pp.463-624

A. Corsi, B. Wightman, and M. Chalfie, A Transparent window into biology: A primer on Caenorhabditis elegans, WormBook, vol.2015, pp.1-31, 26087236.

Z. Altun and D. Hall, Epithelial system, hypodermis, 2009.

A. Page and I. Johnstone, The cuticle WormBook: The C. elegans Research Community ed, pp.1-15, 2007.

K. Davies and R. Curtis, Cuticle Surface Coat of Plant-Parasitic Nematodes, Annual Review of Phytopathology, vol.49, issue.1, pp.135-5621568702, 2011.
DOI : 10.1146/annurev-phyto-121310-111406

K. Madison, Barrier Function of the Skin: ???La Raison d'??tre??? of the Epidermis, Journal of Investigative Dermatology, vol.121, issue.2, pp.231-4112880413, 2003.
DOI : 10.1046/j.1523-1747.2003.12359.x

S. Xu, T. Hsiao, and A. Chisholm, The wounded worm, Worm, vol.67, issue.2, pp.134-824058838, 2012.
DOI : 10.1093/nar/gkg644

I. Johnstone, Cuticle collagen genes, Trends in Genetics, vol.16, issue.1, pp.21-710637627, 2000.
DOI : 10.1016/S0168-9525(99)01857-0

H. Moribe, R. Konakawa, D. Koga, T. Ushiki, K. Nakamura et al., Tetraspanin Is Required for Generation of Reactive Oxygen Species by the Dual Oxidase System in Caenorhabditis elegans, PLoS Genetics, vol.8, issue.9, p.100295723028364, 2012.
DOI : 10.1371/journal.pgen.1002957.s010

K. Norman and D. Moerman, The let-268 Locus of Caenorhabditis elegans Encodes a Procollagen Lysyl Hydroxylase That Is Essential for Type IV Collagen Secretion, Developmental Biology, vol.227, issue.2, pp.690-705, 2000.
DOI : 10.1006/dbio.2000.9897

G. Cox, S. Staprans, and R. Edgar, The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic, pp.1078432-1078438

J. Myllyharju and K. Kivirikko, Collagens, modifying enzymes and their mutations in humans, flies and worms, Trends in Genetics, vol.20, issue.1, pp.33-43, 2004.
DOI : 10.1016/j.tig.2003.11.004

C. Has and L. Bruckner-tuderman, The Genetics of Skin Fragility, Annual Review of Genomics and Human Genetics, vol.15, issue.1, pp.245-68, 2014.
DOI : 10.1146/annurev-genom-090413-025540

M. Frank, J. Albuisson, B. Ranque, L. Golmard, J. Mazzella et al., The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers???Danlos syndrome, European Journal of Human Genetics, vol.149, issue.12, p.25758994, 2015.
DOI : 10.1002/ajmg.a.32809

N. Pujol, O. Zugasti, D. Wong, C. Couillault, C. Kurz et al., Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides, PLoS Pathogens, vol.4, issue.7, 2008.
DOI : 10.1371/journal.ppat.1000105.s010

N. Pujol, S. Cypowyj, K. Ziegler, A. Millet, A. Astrain et al., Distinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis, Current Biology, vol.18, issue.7, pp.481-490, 2008.
DOI : 10.1016/j.cub.2008.02.079

URL : https://hal.archives-ouvertes.fr/hal-00294199

P. Goh and T. Bogaert, Positioning and maintenance of embryonic body wall muscle attachments in C. elegans requires the mup-1 gene, Development, vol.111, pp.667-811879334, 1991.

J. Kramer and J. Johnson, Analysis of mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans, Genetics, vol.135, pp.1035-458307321, 1993.

A. Levy, J. Yang, and J. Kramer, Molecular and genetic analyses of the Caenorhabditis elegans dpy-2 and dpy-10 collagen genes: a variety of molecular alterations affect organismal morphology., Molecular Biology of the Cell, vol.4, issue.8, pp.803-820, 1993.
DOI : 10.1091/mbc.4.8.803

K. Nishiwaki and J. Miwa, Mutations in genes encoding extracellular matrix proteins suppress the emb-5 gastrulation defect in Caenorhabditis elegans, Molecular and General Genetics MGG, vol.259, issue.1, pp.2-129738874, 1998.
DOI : 10.1007/s004380050782

O. Sorensen, D. Thapa, K. Roupe, E. Valore, U. Sjobring et al., Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor, Journal of Clinical Investigation, vol.116, issue.7, pp.1878-85, 2006.
DOI : 10.1172/JCI28422

A. Tong, G. Lynn, V. Ngo, D. Wong, S. Moseley et al., Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase, Proceedings of the National Academy of Sciences, vol.117, issue.22, pp.1457-61, 2009.
DOI : 10.1242/jcs.01403

URL : https://hal.archives-ouvertes.fr/hal-00403260

P. Mcneil and R. Steinhardt, Plasma Membrane Disruption: Repair, Prevention, Adaptation, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.697-731, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.140101

M. Stanisstreet, Calcium and wound healing in Xenopus early embryos, J Embryol Exp Morphol, vol.67, pp.195-2056806425, 1982.

S. Xu and A. Chisholm, A G??q-Ca2+ Signaling Pathway Promotes Actin-Mediated Epidermal Wound Closure in C.??elegans, Current Biology, vol.21, issue.23, pp.1960-1967, 2011.
DOI : 10.1016/j.cub.2011.10.050

S. Xu and A. Chisholm, C.??elegans Epidermal Wounding Induces a Mitochondrial ROS Burst that Promotes Wound Repair, Developmental Cell, vol.31, issue.1, pp.48-60, 2014.
DOI : 10.1016/j.devcel.2014.08.002

URL : https://hal.archives-ouvertes.fr/hal-01669822

W. Wood, J. A. Grose, R. Woolner, S. Gale, J. Wilson et al., Wound healing recapitulates morphogenesis in Drosophila embryos, Nature Cell Biology, vol.27, issue.11, pp.907-919, 2002.
DOI : 10.1101/gad.8.15.1787

J. Yang, X. Huang, B. Tian, M. Wang, Q. Niu et al., Isolation and Characterization of a Serine Protease from the Nematophagous Fungus, Lecanicillium psalliotae, Displaying Nematicidal Activity, Biotechnology Letters, vol.96, issue.15, pp.1123-1131, 2005.
DOI : 10.1007/s10529-005-8461-0

H. Xie, F. Aminuzzaman, L. Xu, Y. Lai, F. Li et al., Trap Induction and Trapping in Eight Nematode-trapping Fungi (Orbiliaceae) as Affected by Juvenile Stage of Caenorhabditis elegans, Mycopathologia, vol.98, issue.Suppl, pp.467-73, 2010.
DOI : 10.1094/PD-64-527

M. Felix and F. Duveau, Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae, BMC Biology, vol.10, issue.1, p.59, 2012.
DOI : 10.1534/genetics.106.058651

URL : https://hal.archives-ouvertes.fr/inserm-00723270

H. Jansson, Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants, J Nematol, vol.26, pp.430-435, 1994.

H. Jansson, A. Von-hofsten, and C. Von-mecklenburg, Life cycle of the endoparasitic nematophagous fungus Meria coniospora: a light and electron microscopic study, Antonie van Leeuwenhoek, vol.96, issue.4
DOI : 10.1007/BF00394645

J. Hodgkin, M. Felix, L. Clark, D. Stroud, and M. Gravato-nobre, Two Leucobacter Strains Exert Complementary Virulence on Caenorhabditis Including Death by Worm-Star Formation, Current Biology, vol.23, issue.21, pp.2157-61, 2013.
DOI : 10.1016/j.cub.2013.08.060

H. Nicholas and J. Hodgkin, The ERK MAP Kinase Cascade Mediates Tail Swelling and a Protective Response to Rectal Infection in C. elegans, Current Biology, vol.14, issue.14, pp.1256-61, 2004.
DOI : 10.1016/j.cub.2004.07.022

J. Hodgkin, P. Kuwabara, and B. Corneliussen, A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans, Current Biology, vol.10, issue.24, pp.1615-1623, 2000.
DOI : 10.1016/S0960-9822(00)00867-8

M. Gravato-nobre, D. Stroud, D. O-'rourke, C. Darby, and J. Hodgkin, Glycosylation Genes Expressed in Seam Cells Determine Complex Surface Properties and Bacterial Adhesion to the Cuticle of Caenorhabditis elegans, Genetics, vol.187, issue.1, pp.141-55, 2011.
DOI : 10.1534/genetics.110.122002

E. Palaima, N. Leymarie, D. Stroud, R. Mizanur, J. Hodgkin et al., -Glycans Affecting Bacterial Resistance, Journal of Biological Chemistry, vol.32, issue.23, pp.17662-72, 2010.
DOI : 10.1371/journal.ppat.0040002

URL : http://www.jbc.org/content/285/23/17662.full.pdf

V. Rouger, G. Bordet, C. Couillault, S. Monneret, S. Mailfert et al., Independent Synchronized Control and Visualization of Interactions between Living Cells and Organisms, Biophysical Journal, vol.106, issue.10, pp.2096-104, 2014.
DOI : 10.1016/j.bpj.2014.03.044

D. Olsen, D. Phu, L. Libby, J. Cormier, K. Montez et al., Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans, Genes, Brain and Behavior, vol.134, issue.3, pp.240-52, 2007.
DOI : 10.1006/dbio.2000.9686

D. Grenache, I. Caldicott, P. Albert, D. Riddle, and S. Politz, Environmental induction and genetic control of surface antigen switching in the nematode Caenorhabditis elegans., Proceedings of the National Academy of Sciences, vol.93, issue.22, pp.12388-93, 1996.
DOI : 10.1073/pnas.93.22.12388

S. Labed and N. Pujol, Caenorhabditis elegans Antifungal Defense Mechanisms, International Journal of Clinical Reviews, vol.5, pp.110-117, 2011.
DOI : 10.5275/ijcr.2012.04.07

C. Fekete, M. Tholander, B. Rajashekar, D. Ahren, E. Friman et al., Paralysis of nematodes: shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans, Environmental Microbiology, vol.57, issue.2, pp.364-75, 2008.
DOI : 10.1105/tpc.003426

C. Couillault, N. Pujol, J. Reboul, L. Sabatier, J. Guichou et al., TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM, Nature Immunology, vol.31, issue.5, pp.488-94, 2004.
DOI : 10.1093/nar/gkg092

I. Engelmann, A. Griffon, L. Tichit, F. Montanana-sanchis, G. Wang et al., A Comprehensive Analysis of Gene Expression Changes Provoked by Bacterial and Fungal Infection in C. elegans, PLoS ONE, vol.104, issue.5, 2011.
DOI : 10.1371/journal.pone.0019055.s022

URL : https://hal.archives-ouvertes.fr/hal-01261853

D. Ahren, M. Tholander, C. Fekete, B. Rajashekar, E. Friman et al., Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum, Microbiology, vol.151, issue.3, pp.789-803, 2005.
DOI : 10.1099/mic.0.27485-0

N. Pujol, P. Davis, and J. Ewbank, The Origin and Function of Anti-Fungal Peptides in C. elegans: Open Questions, Frontiers in Immunology, vol.3, 2012.
DOI : 10.3389/fimmu.2012.00237

J. Ewbank, Signaling in the immune response, WormBook, 2006.
DOI : 10.1895/wormbook.1.83.1

URL : https://hal.archives-ouvertes.fr/inserm-00193898

O. Zugasti and J. Ewbank, Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-?? signaling pathway in Caenorhabditis elegans epidermis, Nature Immunology, vol.269, issue.3, pp.249-56, 2009.
DOI : 10.1016/S0378-1119(00)00579-5

URL : https://hal.archives-ouvertes.fr/hal-00408369

O. Zugasti, N. Bose, B. Squiban, J. Belougne, C. Kurz et al., Activation of a G protein???coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans, Nature Immunology, vol.351, issue.9, pp.833-841, 2014.
DOI : 10.1021/ja210202y

URL : https://hal.archives-ouvertes.fr/hal-01134518

J. Mrochek, S. Dinsmore, and D. Ohrt, Monitoring phenylalanine-tyrosine metabolism by high-resolution liquid chromatography of urine, Clin Chem, vol.19, pp.927-364720815, 1973.

E. Mayatepek, C. Seppel, and G. Hoffmann, Increased urinary excretion of dicarboxylic acids and 4-hydroxy- phenyllactic acid in patients with Zellweger syndrome

L. Spaapen, D. Ketting, S. Wadman, L. Bruinvis, and M. Duran, Urinary D-4-hydroxyphenyllactate, D-phenyllactate and D-2-hydroxyisocaproate, abnormalities of bacterial origin, Journal of Inherited Metabolic Disease, vol.241, issue.4, pp.383-90, 1987.
DOI : 10.1007/BF01799981

K. Ziegler, C. Kurz, S. Cypowyj, C. Couillault, M. Pophillat et al., Antifungal Innate Immunity in C. elegans: PKC?? Links G Protein Signaling and a Conserved p38 MAPK Cascade, Cell Host & Microbe, vol.5, issue.4, pp.341-52, 2009.
DOI : 10.1016/j.chom.2009.03.006

URL : https://hal.archives-ouvertes.fr/hal-00408433

J. Imler and J. Hoffmann, Toll signaling: the TIReless quest for specificity, Nature Immunology, vol.408, issue.2, pp.105-111, 2003.
DOI : 10.1038/35047056

K. Dierking, J. Polanowska, S. Omi, I. Engelmann, M. Gut et al., Unusual Regulation of a STAT Protein by an SLC6 Family Transporter in C.??elegans Epidermal Innate Immunity, Cell Host & Microbe, vol.9, issue.5, pp.425-460, 2011.
DOI : 10.1016/j.chom.2011.04.011

URL : https://hal.archives-ouvertes.fr/hal-00611411

E. Kiss-toth, Tribbles: ???puzzling??? regulators of cell signalling, Biochemical Society Transactions, vol.33, issue.2, pp.684-691, 2011.
DOI : 10.1172/JCI41366

T. Gumienny and C. Savage-dunn, TGF-b signaling in C. elegans, WormBook, vol.2013, pp.1-34, 23908056.

M. Tan, Genetic and genomic dissection of hostpathogen interactions using a P. aeruginosa-C. elegans pathogenesis model, Pediatr Pulmonol, vol.32, pp.96-103, 2001.

G. Mallo, C. Kurz, C. Couillault, N. Pujol, S. Granjeaud et al., Inducible Antibacterial Defense System in C. elegans, Current Biology, vol.12, issue.14, pp.1209-1223, 2002.
DOI : 10.1016/S0960-9822(02)00928-4

S. Duclos, G. Clavarino, G. Rousserie, G. Goyette, J. Boulais et al., The endosomal proteome of macrophage and dendritic cells, PROTEOMICS, vol.176, issue.5, pp.854-64, 2011.
DOI : 10.4049/jimmunol.176.10.5918

URL : https://hal.archives-ouvertes.fr/hal-00609580

A. Blasius, C. Arnold, P. Georgel, S. Rutschmann, Y. Xia et al., Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells, Proceedings of the National Academy of Sciences, vol.329, issue.5998, pp.19973-19981, 2010.
DOI : 10.1126/science.1187029

T. Kobayashi, S. Shimabukuro-demoto, R. Yoshida-sugitani, K. Furuyama-tanaka, H. Karyu et al., The Histidine Transporter SLC15A4 Coordinates mTOR-Dependent Inflammatory Responses and Pathogenic Antibody Production, Immunity, vol.41, issue.3, pp.375-88, 2014.
DOI : 10.1016/j.immuni.2014.08.011

URL : https://doi.org/10.1016/j.immuni.2014.08.011

C. Wang, A. Ahlford, T. Jarvinen, G. Nordmark, M. Eloranta et al., Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations, European Journal of Human Genetics, vol.25, issue.9, pp.994-1003, 2013.
DOI : 10.1177/0961203310374305

S. Labed, S. Omi, M. Gut, J. Ewbank, and N. Pujol, The Pseudokinase NIPI-4 Is a Novel Regulator of Antimicrobial Peptide Gene Expression, PLoS ONE, vol.175, issue.3, 2012.
DOI : 10.1371/journal.pone.0033887.s002

J. Boudeau, D. Miranda-saavedra, G. Barton, and D. Alessi, Emerging roles of pseudokinases, Trends in Cell Biology, vol.16, issue.9, pp.443-52, 2006.
DOI : 10.1016/j.tcb.2006.07.003

E. Zeqiraj, B. Filippi, M. Deak, D. Alessi, and D. Van-aalten, Structure of the LKB1-STRAD-MO25 Complex Reveals an Allosteric Mechanism of Kinase Activation, Science, vol.17, issue.1, pp.1707-1718, 2009.
DOI : 10.1016/j.str.2008.10.018

Y. Zhang, W. Li, L. Li, Y. Li, R. Fu et al., Structural Damage in the C.??elegans Epidermis Causes Release of STA-2 and Induction of an Innate Immune Response, Immunity, vol.42, issue.2, pp.309-329, 2015.
DOI : 10.1016/j.immuni.2015.01.014

R. Francis and R. Waterston, Muscle cell attachment in Caenorhabditis elegans, The Journal of Cell Biology, vol.114, issue.3, pp.465-79, 1991.
DOI : 10.1083/jcb.114.3.465

URL : http://jcb.rupress.org/content/jcb/114/3/465.full.pdf

B. Hahn and M. Labouesse, Tissue integrity: Hemidesmosomes and resistance to stress, Current Biology, vol.11, issue.21, pp.858-61, 2001.
DOI : 10.1016/S0960-9822(01)00516-4

URL : https://doi.org/10.1016/s0960-9822(01)00516-4

H. Zhang, F. Landmann, H. Zahreddine, D. Rodriguez, M. Koch et al., A tension-induced mechanotransduction pathway promotes epithelial morphogenesis, Nature, vol.26, issue.7336, pp.99-103, 2011.
DOI : 10.1093/bioinformatics/btq013

R. Ogawa and C. Hsu, Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration, Journal of Cellular and Molecular Medicine, vol.213, issue.Suppl. 1, pp.817-839, 2013.
DOI : 10.1016/j.jamcollsurg.2011.07.001

S. Laval, H. Laklai, M. Fanjul, M. Pucelle, H. Laurell et al., Dual roles of hemidesmosomal proteins in the pancreatic epithelium: the phosphoinositide 3-kinase decides, Oncogene, vol.56, issue.15, pp.1934-1978, 2014.
DOI : 10.1242/jcs.085480