R. Scheubel, J. Holtz, I. Friedrich, J. Borgermann, K. 1. et al., Paracrine effects of CD34 progenitor cells on angiogenic endothelial sprouting, International Journal of Cardiology, vol.139, issue.2, pp.134-175, 2010.
DOI : 10.1016/j.ijcard.2008.10.009

S. Rafii and D. Lyden, Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration, Nature Medicine, vol.106, issue.6, pp.702-714, 2003.
DOI : 10.1161/01.CIR.0000027584.85865.B4

J. Wang, S. Zhang, B. Rabinovich, L. Bidaut, S. 3. Alauddin et al., Human CD34+ Cells in Experimental Myocardial Infarction: Long-Term Survival, Sustained Functional Improvement, and Mechanism of Action, Circulation Research, vol.106, issue.12, pp.1904-1915, 2010.
DOI : 10.1161/CIRCRESAHA.110.221762

G. Poglajen, M. Sever, M. Cukjati, P. Cernelc, K. 4. Zemljic et al., Effects of Transendocardial CD34+ Cell Transplantation in Patients With Ischemic Cardiomyopathy, Circulation: Cardiovascular Interventions, vol.7, issue.4, pp.552-561, 2014.
DOI : 10.1161/CIRCINTERVENTIONS.114.001436

G. Jacobowitz, J. Levine, and G. Gurtner, Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation , adhesion, and incorporation into vascular structures, Circulation, vol.106, pp.2781-2787, 2002.

G. Fadini, M. Albiero, S. Vigili-de-kreutzenberg, B. 6. Cappellari, R. Marescotti et al., Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans, Diabetes Care, vol.36, issue.4, pp.943-952, 2013.
DOI : 10.2337/dc12-1084

URL : http://care.diabetesjournals.org/content/diacare/36/4/943.full.pdf

G. Fadini, S. Ciciliot, and M. Albiero, Concise Review: Perspectives and Clinical Implications of Bone Marrow and Circulating Stem Cell Defects in Diabetes, STEM CELLS, vol.17, issue.1, pp.106-122, 2017.
DOI : 10.1016/j.cmet.2013.04.001

D. Broquères-you, C. Leré-déan, T. Merkulova-rainon, C. Mantsounga, D. Allanic et al., Ephrin-B2-Activated Peripheral Blood Mononuclear Cells From Diabetic Patients Restore Diabetes-Induced Impairment of Postischemic Neovascularization, Diabetes, vol.61, issue.10, pp.2621-2653, 2012.
DOI : 10.2337/db11-1768

M. Malecki, C. Sabo, E. Putzer, C. Stampe, A. Foorohar et al., Recruitment and retention of human autologous CD34+ CD117+ CD133+ bone marrow stem cells to infarcted myocardium followed by directed vasculogenesis: Novel strategy for cardiac regeneration Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells, Mol Cell Ther. Circulation, vol.1117, pp.206-221, 2008.

E. Lev, Z. Estrov, K. Aboulfatova, D. Harris, J. Granada et al., Summary, Thrombosis and Haemostasis, vol.96, issue.10, pp.498-504, 2006.
DOI : 10.1160/TH06-05-0250

A. Bonnefoy, R. Moura, and M. Hoylaerts, Thrombospondins: from structure to therapeutics, Cellular and Molecular Life Sciences, vol.65, issue.5, pp.713-740, 2008.
DOI : 10.1007/s00018-007-7487-y

N. Floquet, S. Dedieu, L. Martiny, M. Dauchez, and D. Perahia, Human thrombospondin???s (TSP-1) C-terminal domain opens to interact with the CD-47 receptor: A molecular modeling study, Archives of Biochemistry and Biophysics, vol.478, issue.1, pp.103-112, 2008.
DOI : 10.1016/j.abb.2008.07.015

URL : https://hal.archives-ouvertes.fr/hal-01109933

A. Gao, F. Lindberg, J. Dimitry, E. Brown, and W. Frazier, Thrombospondin modulates alpha v beta 3 function through integrin- associated protein, The Journal of Cell Biology, vol.135, issue.2, pp.533-577, 1996.
DOI : 10.1083/jcb.135.2.533

URL : http://jcb.rupress.org/content/jcb/135/2/533.full.pdf

X. Wang, F. Lindberg, and W. Frazier, Integrin-Associated Protein Stimulates ??2??1-Dependent Chemotaxis via GI-Mediated Inhibition of Adenylate Cyclase and Extracellular-Regulated Kinases, The Journal of Cell Biology, vol.145, issue.2, pp.389-400, 1999.
DOI : 10.1006/excr.1994.1282

H. Barazi, Z. Li, J. Cashel, H. Krutzsch, D. Annis et al., Regulation of integrin function by CD47 ligands. Differential effects on alpha vbeta 3 and alpha 4beta1 integrin-mediated adhesion, J Biol Chem, vol.17277, pp.42859-66, 2002.

P. Eren, A. Bonnefoy, M. Lebret, P. Foubert, R. Merval et al., Abstract 1299: Thrombospondin-1 is essential for bone marrow mononuclear cell recruitment to sites of vascular injury, II_265. Available from http, 2007.

O. Blanc-brude, P. Eren, A. Bonnefoy, G. Matrone, F. 1. Duriez et al., Abstract 895: CD47 activation by thrombospondin peptides enhances bone marrow mononuclear cell adhesion, recruitment during thrombosis, endothelial differentiation and stimulates pro-angiogenic cell therapy Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells, Circulation Diabetes, vol.11656, pp.960-967, 2007.

P. Brooks, R. Clark, and D. Cheresh, Requirement of vascular integrin alpha v beta 3 for angiogenesis, Science, vol.264, issue.5158, pp.569-71, 1994.
DOI : 10.1126/science.7512751

F. Bussolino, Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2, EMBO J, vol.18, pp.882-92, 1999.

S. Strömblad, J. Becker, M. Yebra, P. Brooks, and D. Cheresh, Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis., Journal of Clinical Investigation, vol.98, issue.2, pp.426-459, 1996.
DOI : 10.1172/JCI118808

K. Hamano, Cellular expression of integrin-beta 1 is of critical importance for inducing therapeutic angiogenesis by cell implantation, Cardiovasc Res, vol.65, pp.64-72, 2005.

D. Richel, H. Johnsen, J. Canon, T. Guillaume, S. 2. Mr et al., Highly purified CD34+ cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients, Bone Marrow Transplantation, vol.18, issue.3, pp.243-252, 2000.
DOI : 10.1089/106161299320532

D. Dorahy, R. Thorne, J. Fecondo, and G. Burns, Stimulation of Platelet Activation and Aggregation by a Carboxyl-terminal Peptide from Thrombospondin Binding to the Integrin-associated Protein Receptor, Journal of Biological Chemistry, vol.268, issue.2, pp.1323-1353, 1997.
DOI : 10.3109/09537109209013181

P. Foubert, J. Silvestre, B. Souttou, V. Barateau, C. Martin et al., PSGL-1???mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells, Journal of Clinical Investigation, vol.117, issue.6, pp.1527-1564, 2007.
DOI : 10.1172/JCI28338DS1

T. Nakamura, H. Koga, H. Iwamoto, V. Tsutsumi, Y. Imamura et al., Ex vivo expansion of circulating CD34+ cells enhances the regenerative effect on rat liver cirrhosis, Molecular Therapy - Methods & Clinical Development, vol.3, p.16025, 2016.
DOI : 10.1038/mtm.2016.25

M. Brehm, P. Ebner, F. Picard, R. Urbien, and G. Turan, Enhanced mobilization of CD34+ progenitor cells expressing cell adhesion molecules in patients with STEMI, Clinical Research in Cardiology, vol.37, issue.9 Suppl, pp.477-86, 2009.
DOI : 10.1152/ajpheart.01146.2002

M. Albiero, N. Poncina, M. Tjwa, S. Ciciliot, L. Menegazzo et al., Diabetes Causes Bone Marrow Autonomic Neuropathy and Impairs Stem Cell Mobilization via Dysregulated p66Shc and Sirt1, Diabetes, vol.63, issue.4, pp.1353-65, 2014.
DOI : 10.2337/db13-0894

URL : https://doi.org/10.2337/db13-0894

S. Gardai, D. Bratton, C. Ogden, and P. Henson, Recognition ligands on apoptotic cells: a perspective, Journal of Leukocyte Biology, vol.386, issue.5, pp.896-903, 2006.
DOI : 10.1038/386181a0

URL : http://www.jleukbio.org/content/79/5/896.full.pdf

I. Jialal, S. Devaraj, U. Singh, and B. Huet, Decreased number 32. and impaired functionality of endothelial progenitor cells in subjects with metabolic syndrome: Implications for increased cardiovascular risk, Atherosclerosis, vol.11, pp.297-302, 2010.

Y. Jw, Y. Deng, X. Han, G. Ren, J. Cai et al., Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice Desouza CV. Does drug therapy reverse endothelial pro- 34. genitor cell dysfunction in diabetes?, Cardiovasc Diabetol. J Diabetes Complications, vol.331527, pp.88519-88544, 2013.

Y. Shimizu, S. Sato, J. Koyamatsu, H. Yamanashi, N. 3. Kadota et al., Circulating CD34-positive cells, glomerular filtration rate and triglycerides in relation to hypertension, Atherosclerosis, vol.243, issue.1, pp.71-77, 2015.
DOI : 10.1016/j.atherosclerosis.2015.08.035