M. J. Borgnia, D. Kozono, G. Calamita, P. C. Maloney, P. Agre et al., Functional reconstitution and characterization of AqpZ, the E. coli water channel protein Structural basis of water-specific transport through the Aqp1 water channel The aquaporin family of water channels in kidney Cellular distribution of the aquaporins: a family of water channel proteins Dissecting membrane protein architecture: An annotation of structural complexity, 1?9. (8) Fetter, K.; van Wilder Chaumont, F. Interactions between Plasma Membrane Aquaporins Modulate Their Water Channel Activity, pp.1169-1179, 1995.

H. Yamaguchi, K. Shinzawa-itoh, R. Nakashima, R. Yaono, S. Yoshikawa et al., Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å, Science, vol.269, issue.11, 1995.

A. Zhang, P. Khursigara, C. M. Hartnell, L. M. Subramaniam, and S. , Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy, 3777?3781. (13) Hubert, pp.117-124, 1793.
DOI : 10.1016/S0076-6879(83)96041-X

D. Bagnard, J. Sturgis, M. J. Borgnia, and P. Agre, Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adhes. Migr Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.4, issue.98, pp.313-324, 2001.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins et al., Protein Identification and Analysis Tools on the ExPASy Server The AQP2 mutation V71M causes nephrogenic diabetes insipidus in humans but does not impair the function of a bacterial homolog Structural Determinants of Oligomerization of the Aquaporin-4 Channel, The Proteomics Protocols Handbook 640?646. (18) Cymer, F.; Schneider, D. A single glutamate residue controls the oligomerization, function, and stability of the aquaglyceroporin GlpF, pp.279-286, 2000.

C. Adair, B. D. Engelman, D. M. Kim, S. Jeon, T. Oberai et al., Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain Mingarro, I. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers, 639?651. (24) Miller, C. Design, function and structure of a monomeric ClC transporter, pp.6858-6871, 1994.

J. L. Robertson, The dimerization equilibrium of a CLC CL ? /H + antiporter in lipid bilayers, No. e17438. (28), 2016.

C. Robinson, H. Piyadasa, J. D. Neil, and L. Konermann, The role of interfacial lipids in stabilizing membrane protein oligomers Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator, 421?424. (29) Pan, 2017.

E. Krissinel, K. Henrick, S. Jones, J. M. Thornton, S. Jones et al., Inference of Macromolecular Assemblies from Crystalline State Protein-protein interactions: A review of protein dimer structures Principles of protein-protein interactions, 13?20. (33) Schro? dinger, L. L. C. The PyMOL Molecular Graphics System, version 1.8, 2015. (34) Savage, D. F.; Egea, P. F.; Robles-Colmenares, Y.; O'Connell, J, pp.774-797, 1995.

D. Stroud, R. M. Partridge, A. W. Melnyk, R. A. Deber, and C. M. , Architecture and Selectivity in Aquaporins: 2.5 Å X- Ray Structure of Aquaporin Z Polar residues in membrane domains of proteins: Molecular basis for helix?helix association in a mutant CFTR transmembrane segment, 3647?3653. (36) Curran, A. R.; Engelman, D. M. Sequence motifs, polar interactions and conformational changes in helical membrane proteins, 2002.

B. Degiacomi, M. T. Baldwin, A. J. Robinson, C. Klein, N. Neumann et al., Folding and stability of the aquaglyceroporin GlpF: implications for human aqua(glycero)porin diseases Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli Modeling detergent organization around aquaporin-0 using Small-Angle X-ray Scattering K2D2: Estimation of protein secondary structure from circular dichroism spectra Circular dichroism spectroscopy of membrane proteins Using circular dichroism spectra to estimate protein secondary structure Folding and stability of the aquaglyceroporin GlpF: Implications for human aqua(glycero)porin diseases, Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2888?2893. (40) Skach, W. R. A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization) Popot, J. L.; Engelman, D. M. Membrane protein folding and oligomerization: the two-stage model, pp.172-175, 1848.

Y. K. Reshetnyak, A. Senes, J. Popot, T. Febs-lett-walz, B. L. Smith et al., The three-dimensional structure of human erythrocyte aquaporin CHIP Functionality of aquaporin-2 missense mutants in recessive nephrogenic diabetes insipidus. Eur Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the waterconducting channel Hydration of protein-protein interfaces Crystal structural analysis of protein-protein interactions drastically destabilized by a single mutation Lipid perturbation by membrane proteins and the lipophobic effect) Barik, S. Site-directed mutagenesis by double polymerase chain reaction Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy, Membrane protein folding: beyond the two stage model 36? 45. (52) Urakubo 32?51. (56) Karimova, G.; Robichon, C.; Ladant, D. Characterization of YmgF, a 72-Residue Inner Membrane Protein That Associates with the Escherichia coli Cell Division Machinery, pp.122-125, 0191.