Microsatellite Primers in Parietaria judaica (Urticaceae)
to Assess Genetic Diversity and Structure in Urban Landscapes
Angèle Bossu, Valérie Bertaudière-Montès, Vincent Dubut, Stephanie Manel

To cite this version:
Angèle Bossu, Valérie Bertaudière-Montès, Vincent Dubut, Stephanie Manel. Microsatellite Primers in Parietaria judaica (Urticaceae) to Assess Genetic Diversity and Structure in Urban Landscapes. Applications in Plant Sciences, Wiley, 2014, 2 (9), pp.1400036. 10.3732/apps.1400036. hal-01769473
Microsatellite primers in *Parietaria judaica* (Urticaceae) to assess genetic diversity and structure in urban landscapes

ANGÈLE BOSSU²,⁵, **VALÉRIE BERTAUDIERE-MONTÉS**², **VINCENT DUBUT**³, and **STÉPHANIE MANEL**²,⁴

²Aix Marseille Université, Institut de recherche pour le développement (IRD), Laboratoire Population Environnement Développement (LPED) UMR_D151, 13331 Marseille, France; ³Aix Marseille Université, Centre national de la recherche scientifique (CNRS), IRD, Univ. Avignon, IMBE—UMR7263, 13331 Marseille CEDEX 3, France; and ⁴Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR AMAP, TA A51/PS2, 34398 Montpellier CEDEX 5, France

Premise of the study: Urbanization is one of the main factors contributing to loss of genetic diversity, as the resulting landscape fragmentation and habitat loss induce species isolation. However, studies of genetic structure and diversity in urbanized landscapes are still rare. We characterized microsatellite primers for *Parietaria judaica* to study this environment.

Methods and Results: Eleven microsatellite loci from *P. judaica*, an urban plant, were isolated using shotgun pyrosequencing, and the simple sequence repeat (SSR) markers were screened in 20 individuals of *P. judaica*. The loci were tested on 166 individuals from three populations in different cities. The number of alleles ranged from two to 19, and expected and observed heterozygosity values ranged from 0.019 to 0.912 and 0.019 to 0.448, respectively.

Conclusions: The markers amplified well in the species and will be useful for examining genetic diversity and population genetic structure in this urban plant.

Key words: microsatellites; *Parietaria judaica*; urban area; Urticaceae.

Parietaria judaica L. is a perennial herb, with individual plants consisting of many shoots emerging from a common rootstock. The plant is a wind-pollinated species of the Urticaceae family that grows in urban Mediterranean areas (Fotiou et al., 2011) and is very common on urban walls. This wide occurrence will facilitate studies of genetic diversity and genetic structure in urban environments. While urbanization is one of the main factors contributing to loss of genetic biodiversity, genetic patterns in urban areas have been understudied (Mandel and Holderegger, 2013). In the current study, we have developed and characterized 11 microsatellite markers for *P. judaica* that will be used for further studies to examine genetic diversity of plants in urban environments.

METHODS AND RESULTS

Twenty individuals of *P. judaica* were collected in Marseilles, France (43.296346°N, 5.369889°E; voucher specimen available at the Herbarium of Muséum d’Histoire Naturelle d’Aix-en-Provence [AIX], barcode number AIX036092). Samples were sent to Genoscreen (Lille, France) to develop and characterize microsatellites. Total genomic DNA was isolated from individuals' leaf tissues using NucleoSpin Plant II (Macherey-Nagel, Duren, Germany). A total of 1 μg of DNA was used for the development of microsatellite libraries through 454 GS FLX Titanium pyrosequencing of enriched DNA libraries as described in Malaua et al. (2011). Total DNA was enriched for TG, TC, AAC, AAG, AGG, ACG, ACAT, and ACTC repeat motifs and subsequently amplified. PCR products were purified, quantified, and GS FLX libraries were then constructed following the manufacturer’s protocols (Roche Diagnostics, Meylan, France) and sequenced on a GS FLX PicoTiterPlate Kit (Roche Diagnostics). Sequences with a minimum of five repeats were selected. The bioinformatics program QDD version 1 with default parameters (Meglécz et al., 2010) was used to filter for redundancy, resulting in a final set of sequences from which it was possible to design primers. Finally, for a total of 43.9 Mbp read in the run, 10,895 sequences comprised microsatellite motifs with an average length of 304 bp. A total of 1114 primer sets were designed with QDD using BLAST, ClustalW, and Primer3 (Altschul et al., 1990; Larkin et al., 2007; Altschul et al., 1990). Primer3 (Alishchul et al., 1990; Larkin et al., 2007; Rozen and Skaletsky, 2000). A subgroup of 47 primer pairs was then tested for amplification. Primer sets were discarded if they failed to amplify or led to multiple fragments.

Each primer pair was assessed in eight individuals of *P. judaica*. Microsatellite loci were amplified in 25-μL reactions containing 20 ng of template DNA, 1 unit of *Taq* polymerase (FastStart *Taq* DNA polymerase, Roche Diagnostics), 0.6 mM of dNTPs, 3.75 mM of MgCl₂, and 0.1 μM of each forward and reverse primer. The amplification profiles included initial denaturation at 95°C for 10 min; followed by 40 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 1 min; followed by a final extension at 72°C for 10 min. For each PCR, a negative control was included. A total of 2 μL of PCR product was separated on 2% agarose gel. Primer pairs that amplified in at least five individuals were validated. Among 47 primer pairs tested, 26 pairs were validated on a subset of eight individuals from Marseilles, France. Polymorphism of 24 microsatellite loci was tested on the same subset of individuals
that was used for amplification tests. PCR cycles and mixture were the same as those mentioned previously except that we used 10 pmol of each forward and reverse primer (instead of 1 pmol). One microliter of each PCR product was run in an ABI 3730xl DNA Analyzer (Applied Biosystems, Waltham, Massachusetts, USA). Results were analyzed with GeneMapper 4.0 (Applied Biosystems).

Eleven markers were selected, and amplifications were tested for individuals sampled from three different cities: 85 individuals in Marseilles (43.296346°N, 5.369889°E), 52 individuals in Lauris (43.531127°N, 5.454025°E), and 55 individuals in Aix-en-Provence (43.747778°N, 5.313611°E). All loci showed significant linkage disequilibrium (except loci ParJ_31 in the Lauris population and ParJ_37 in the Lauris and Aix-en-Provence populations).

CONCLUSIONS

The molecular markers described here are the first microsatellite loci isolated for *P. judaica* isolated. Most markers showed median levels of polymorphism, while ParJ_33 and ParJ_43 showed high levels of polymorphism. Most loci were at Hardy–Weinberg disequilibrium potentially due to genetic drift caused by landscape fragmentation. The set of microsatellite markers will be useful for studying population genetics of *P. judaica* in urban environments.

Table 2. Polymorphism in 11 microsatellite loci developed for three populations of *Parietaria judaica*.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Total</th>
<th>Lauris (N = 29)</th>
<th>Aix-en-Provence (N = 52)</th>
<th>Marseilles (N = 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>H<sub>e</sub></td>
</tr>
<tr>
<td>ParJ_20</td>
<td>166</td>
<td>8</td>
<td>5</td>
<td>0.610<sup>A</sup></td>
</tr>
<tr>
<td>ParJ_26</td>
<td>166</td>
<td>7</td>
<td>3</td>
<td>0.324<sup>B</sup></td>
</tr>
<tr>
<td>ParJ_27</td>
<td>166</td>
<td>6</td>
<td>4</td>
<td>0.506<sup>B</sup></td>
</tr>
<tr>
<td>ParJ_31</td>
<td>166</td>
<td>4</td>
<td>2</td>
<td>0.328</td>
</tr>
<tr>
<td>ParJ_33</td>
<td>166</td>
<td>19</td>
<td>13</td>
<td>0.874<sup>B</sup></td>
</tr>
<tr>
<td>ParJ_34</td>
<td>166</td>
<td>11</td>
<td>6</td>
<td>0.561<sup>B</sup></td>
</tr>
<tr>
<td>ParJ_37</td>
<td>166</td>
<td>3</td>
<td>2</td>
<td>0.128</td>
</tr>
<tr>
<td>ParJ_42</td>
<td>166</td>
<td>6</td>
<td>4</td>
<td>0.604<sup>B</sup></td>
</tr>
<tr>
<td>ParJ_43</td>
<td>166</td>
<td>9</td>
<td>19</td>
<td>0.815<sup>B</sup></td>
</tr>
<tr>
<td>ParJ_44</td>
<td>166</td>
<td>10</td>
<td>3</td>
<td>0.326</td>
</tr>
<tr>
<td>ParJ_45</td>
<td>166</td>
<td>4</td>
<td>3</td>
<td>0.558</td>
</tr>
</tbody>
</table>

Note: A = number of alleles; H_e = expected heterozygosity; H_o = observed heterozygosity; N = total number of samples analyzed.

*Geographic coordinates of populations used in the study: Lauris (43.747778°N, 5.313611°E), Aix-en-Provence (43.531127°N, 5.454025°E), Marseilles (43.296346°N, 5.369889°E).

*Markers deviating from Hardy–Weinberg equilibrium after Bonferroni correction (P < 0.004).
LITERATURE CITED

