Emergence of KPC-producing Klebsiella pneumoniae ST512 isolated from cerebrospinal fluid of a child in Algeria
S. Bakour, F. Sahli, A. Touati, Jean-Marc Rolain

To cite this version:
S. Bakour, F. Sahli, A. Touati, Jean-Marc Rolain. Emergence of KPC-producing Klebsiella pneumoniae ST512 isolated from cerebrospinal fluid of a child in Algeria. New Microbes and New Infections, Wiley Online Library 2015, 3, pp.34-36. 10.1016/j.nmni.2014.09.001. hal-01769491

HAL Id: hal-01769491
https://hal-amu.archives-ouvertes.fr/hal-01769491
Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Emergence of KPC-producing Klebsiella pneumoniae ST512 isolated from cerebrospinal fluid of a child in Algeria

S. Bakour1,2, F. Sahli3, A. Touati1 and J.-M. Rolain2
1) Laboratoire d’Écologie Microbienne, Université de Bejaia, Bejaia, Algeria, 2) Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France and 3) Laboratoire de Microbiologie, CHU de Sétif, Algeria

Abstract

We report class A carbapenemase (KPC)-3-producing Klebsiella pneumoniae meningitis in a 6-month-old child in Algeria. Multilocus sequence typing showed that the sequence type obtained corresponded to ST512, an allelic single-locus variant of the pandemic ST258 widely distributed in KPC producers from Europe. To our knowledge, this is the first report of KPC-3-producing K. pneumoniae ST512 in a North African country.

New Microbes and New Infections © 2014 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.

Keywords: Algeria, Carbapenem resistance, Klebsiella pneumoniae, KPC, ST512

Original Submission: 8 July 2014; Revised Submission: 15 September 2014; Accepted: 26 September 2014
Available online 8 November 2014

Corresponding author: J.-M. Rolain, Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE) CNRS-IRD UMR 7278, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
E-mail: jean-marc.rolain@univ-amu.fr

Emergence of carbapenemase-producing Enterobacteriaceae is one of the major problems faced in hospitals worldwide [1]. Klebsiella pneumoniae that produce class A carbapenemases (KPC) are frequently identified worldwide [2]. Here, we report what to our knowledge is the first case of infection by K. pneumoniae carrying the blaKPC gene isolated from a child in the North African country of Algeria.

In June 2013, a 6-month-old child with hydrocephalus was admitted to neurosurgery ward of Sétif University Hospital, Algeria. After analysis of a cerebrospinal fluid sample, a K. pneumoniae isolate was isolated and identified using the API 20E identification system (bioMérieux, Marcy l’Etoile, France) and confirmed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (Microflex, Bruker Daltonics, Bremen, Germany).

Antibiotic susceptibility testing performed using the disk diffusion on Mueller-Hinton agar and Etest methods described by the Antibiogram Committee of the French Society for Microbiology (http://www.sfm-microbiologie.org/) showed that the isolate was resistant to most antibiotics tested, including β-lactams, aminoglycosides and fluoroquinolones, with minimum inhibitory concentrations against imipenem, ceftazidime, amikacin and ciprofloxacin of 8 μg/mL >256 μg/mL, 64 μg/mL and >32 μg/mL, respectively. The isolate remained susceptible to tigecycline and colistin with low minimum inhibitory concentrations (1 and 0.094 μg/mL, respectively). In order to identify the mechanism of resistance to carbapenems, the isolate was screened for the production of carbapenemase encoding genes using phenotypic tests, including the modified Hodge test [3] and the Carba NP test [4], which were both positive. Metallo-β-lactamase activity performed with the EDTA synergy method [3] was negative.

The presence of genes encoding for extended-spectrum β-lactamases (blaCTX-M, blaTEM, blavEB, blavEB, blavEB) [5], KPCs (blaKPC [6] and blaxaaH8 [8]), class D carbapenemases (blaxaaH8 [8]), and metallo-β-lactamases (blaxaaH8, [5], blaxaaH8, blaxaaH8, blaxaaH8, blaxaaH8 [6]) was determined by standard PCR and sequencing. Analysis of β-lactamase genes by PCR revealed the presence of blaxaaH8 and blaxaaH8 genes. The nucleotides sequences of blaxaaH8 and blaxaaH8 genes, when compared to those on record in the National Center for Biotechnology Information database, showed a complete match with blaxaaH8, blaxaaH8 and blaxaaH8 genes, respectively. Screening for genes encoding aminoglycoside modifying enzymes and 16S rRNA methylase genes demonstrated that the isolate contained aac(6′)-Ib and adaA genes.

Genotyping of the isolate was performed by multilocus sequence typing (MLST) according to the Pasteur schemes available at Institute Pasteur’s MLST Web site (http://www.pasteur.fr/mlst). According to MLST analysis, the K. pneumoniae isolate was attributed to sequence type (ST) 512 (allelic profile: 54-3-1-1-1-79), an allelic single-locus variant of the ST258.

To our knowledge, and according to data in the literature, this is the first report of a KPC-producing K. pneumoniae in Algeria. KPC was first described in North Carolina, USA, by...
Yigit et al. [12] in 2001; since then, it has been reported in other region in the world, including Europe, South America, the Middle East [13] and Africa [14].

Carbapenemase-producing K. pneumoniae can cause life-threatening infections, including bacteremia and pneumonia in critically ill patients [15]. Currently, many studies described the detection of K. pneumoniae isolates resistant to carbapenems in children. These isolates may cause several infections in children, including bloodstream, respiratory and urinary tract infections [16].

In our study, carbapenem-resistant K. pneumoniae was also isolated from a child. Our findings demonstrate that K. pneumoniae resistant to carbapenems have become a serious concern in pediatric care and has emerged in North Africa, especially Algeria.

K. pneumoniae ST258 was the most frequently clone associated with KPC-2 or KPC-3 enzyme production [16]. In late 2005, a carbapenem-resistant K. pneumoniae ST512, a single-locus allelic variant of ST258, was identified in Israel [17]. In the Mediterranean countries, outbreaks of KPC-producing K. pneumoniae have been also reported [2]. In Italy, Pulicrano et al. [16] reported an outbreak of a carbapenem-resistant K. pneumoniae ST512 carrying the blaKPC-3, blaTEM and blaSHV genes occurring between February 2011 and January 2012. In our study, the K. pneumoniae isolates showed the same β-lactamases and sequence type ST512.

In African countries, KPC producers were first identified by Brink et al. [14] in 2012, who reported the emergence of KPC-2-producing K. pneumoniae in South Africa. To date, there is no report describing the detection of KPC-producing K. pneumoniae in the North African countries. In addition, to our knowledge, the presence of the KPC enzyme in other microorganisms was not described in Algeria and in other North African countries. In Algeria, a recent study described the detection of VIM metallo-β-lactamase-producing K. pneumoniae [18], but none of the K. pneumoniae isolates that produced KPC has been identified in this country.

Emergence of carbapenemase-producing K. pneumoniae with a broad-spectrum antibiotic resistance profile limits the antimicrobial therapy options and poses difficulties for patient treatment. The most active agents that can treat carbapenem-resistant K. pneumoniae infections remain colistin and tigecycline [15]. These two antibiotics may be a good therapeutic option in such cases.

In summary, this report documents the emergence of KPC-3 among K. pneumoniae ST512 clinical isolate for the first time in a North African country, Algeria. Their prevalence may be increasing in North African countries. However, more efforts to control the spread of carbapenemase-producing K. pneumoniae and surveillance measures are urgently needed in Algeria.

Conflict of interest
None reported.

Acknowledgement
This study was partly funded by IHU Méditerranée Infection.

References

