J. Lehmann, B. Holzmann, E. Breitbart, P. Schmiegelow, G. Riethmüller et al., Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res, Feb, vol.147, issue.3, pp.841-845, 1987.

F. George, P. Poncelet, J. Laurent, O. Massot, D. Arnoux et al., Cytofluorometric detection of human endothelial cells in whole blood using S-Endo 1 monoclonal antibody, Journal of Immunological Methods, vol.139, issue.1, pp.65-75, 1991.
DOI : 10.1016/0022-1759(91)90352-G

N. Bardin, F. George, M. Mutin, C. Brisson, N. Horschowski et al., S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen, Tissue Antigens, vol.93, issue.5, pp.531-539, 1996.
DOI : 10.1042/bj2590035

N. Bardin, V. Francès, G. Lesaule, N. Horschowski, F. George et al., Identification of the S-Endo 1 Endothelial-Associated Antigen, Biochemical and Biophysical Research Communications, vol.218, issue.1, pp.210-216, 1996.
DOI : 10.1006/bbrc.1996.0037

O. Vainio, D. Dunon, F. Aïssi, J. Dangy, K. Mcnagny et al., HEMCAM, an adhesion molecule expressed by c-kit+ hemopoietic progenitors, The Journal of Cell Biology, vol.135, issue.6, 1996.
DOI : 10.1083/jcb.135.6.1655

URL : http://jcb.rupress.org/content/jcb/135/6/1655.full.pdf

C. Sers, K. Kirsch, U. Rothbächer, G. Riethmüller, and J. Johnson, Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8514-8518, 1993.
DOI : 10.1073/pnas.90.18.8514

C. Mintz-weber and J. Johnson, Identification of the Elements Regulating the Expression of the Cell Adhesion Molecule MCAM/MUC18, Journal of Biological Chemistry, vol.17, issue.44, pp.34672-34680, 2000.
DOI : 10.1074/jbc.271.42.25994

D. Jean, J. Gershenwald, S. Huang, M. Luca, M. Hudson et al., and an Increase in Tumor Growth and Metastasis of Human Melanoma Cells, Journal of Biological Chemistry, vol.2, issue.26, pp.16501-16508, 1998.
DOI : 10.1073/pnas.93.25.14586

S. Xie, J. Price, M. Luca, D. Jean, Z. Ronai et al., Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells, Oncogene, vol.15, issue.17, pp.2069-2075, 1997.
DOI : 10.1038/sj.onc.1201358

J. Lehmann, G. Riethmüller, and J. Johnson, MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily., Proceedings of the National Academy of Sciences, vol.86, issue.24, pp.9891-9895, 1989.
DOI : 10.1073/pnas.86.24.9891

H. Yang, S. Wang, Z. Liu, M. Wu, B. Mcalpine et al., Isolation and characterization of mouse MUC18 cDNA gene, and correlation of MUC18 expression in mouse melanoma cell lines with metastatic ability, Gene, vol.265, issue.1-2, pp.133-145, 2001.
DOI : 10.1016/S0378-1119(01)00349-3

M. Schön, T. Kähne, H. Gollnick, and M. Schön, Expression of gp130 in Tumors and Inflammatory Disorders of the Skin: Formal Proof of its Identity as CD146 (MUC18, Mel-CAM), Journal of Investigative Dermatology, vol.28, issue.Pt 1
DOI : 10.1016/j.cdp.2003.12.006

M. Ihnen, E. Kilic, N. Köhler, T. Löning, I. Witzel et al., Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin, Journal of Clinical Pathology, vol.64, issue.2, pp.146-152, 2011.
DOI : 10.1136/jcp.2010.082602

N. Kijima, N. Hosen, N. Kagawa, N. Hashimoto, A. Nakano et al., CD166/Activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion, Neuro-Oncology, vol.14, issue.6, pp.1254-1264, 2012.
DOI : 10.1158/1078-0432.CCR-07-0428

E. Taira, T. Nagino, H. Taniura, N. Takaha, C. Kim et al., Expression and Functional Analysis of a Novel Isoform of Gicerin, an Immunoglobulin Superfamily Cell Adhesion Molecule, Journal of Biological Chemistry, vol.270, issue.48, pp.28681-28687, 1995.
DOI : 10.1074/jbc.270.48.28681

N. Bardin, V. Francès, V. Combes, J. Sampol, and F. Dignat-george, CD146: biosynthesis and production of a soluble form in human cultured endothelial cells, FEBS Letters, vol.68, issue.1, pp.12-14, 1998.
DOI : 10.1038/bjc.1993.298

N. Bardin, V. Moal, F. Anfosso, L. Daniel, P. Brunet et al., Soluble CD146, a novel endothelial marker, is increased in physiopathological settings linked to endothelial junctional alteration, Thrombosis and Haemostasis, vol.90, issue.5, pp.915-920, 2003.
DOI : 10.1160/TH02-11-0285

E. Boneberg, H. Illges, D. Legler, and G. Fürstenberger, Soluble CD146 is generated by ectodomain shedding of membrane CD146 in a calcium-induced, matrix metalloprotease-dependent process, Microvascular Research, vol.78, issue.3, pp.325-331, 2009.
DOI : 10.1016/j.mvr.2009.06.012

J. Liu, J. Nagpal, C. Jeronimo, J. Lee, H. R. Kim et al., Hypermethylation of MCAM gene is associated with advanced tumor stage in prostate cancer, The Prostate, vol.34, issue.4, pp.418-426, 2008.
DOI : 10.1093/oxfordjournals.epirev.a000782

J. Stalin, M. Nollet, P. Garigue, S. Fernandez, L. Vivancos et al., Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors, Oncogene, vol.102, issue.42, 2016.
DOI : 10.1182/blood-2002-04-1004

URL : https://hal.archives-ouvertes.fr/hal-01456904

B. Guezguez, P. Vigneron, S. Alais, T. Jaffredo, J. Gavard et al., A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells, FEBS Letters, vol.22, issue.15, pp.3649-3656, 2006.
DOI : 10.1038/sj.onc.1206819

N. Bardin, F. Anfosso, J. Massé, E. Cramer, F. Sabatier et al., Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood, pp.3677-3684, 2001.

A. Kebir, K. Harhouri, B. Guillet, J. Liu, A. Foucault-bertaud et al., CD146 Short Isoform Increases the Proangiogenic Potential of Endothelial Progenitor Cells In Vitro and In Vivo, Circulation Research, vol.107, issue.1, pp.66-75, 2009.
DOI : 10.1161/CIRCRESAHA.109.213827

S. Okumura, O. Muraoka, Y. Tsukamoto, H. Tanaka, K. Kohama et al., Involvement of Gicerin in the Extension of Microvilli, Experimental Cell Research, vol.271, issue.2, pp.269-276, 2001.
DOI : 10.1006/excr.2001.5393

M. Elshal, S. Khan, Y. Takahashi, M. Solomon, J. Mccoy et al., CD146 (Mel-CAM), an adhesion marker of endothelial cells, is a novel marker of lymphocyte subset activation in normal peripheral blood, Blood, vol.106, issue.8, pp.2923-2924, 2005.
DOI : 10.1182/blood-2005-06-2307

W. Pickl, O. Majdic, G. Fischer, P. Petzelbauer, I. Faé et al., an activation antigen of human T lymphocytes, MUC18/MCAM (CD146), pp.2107-2115, 1997.

N. Despoix, T. Walzer, N. Jouve, M. Blot-chabaud, N. Bardin et al., Mouse CD146/MCAM is a marker of natural killer cell maturation, European Journal of Immunology, vol.104, issue.10, pp.2855-2864, 2008.
DOI : 10.4049/jimmunol.180.6.3739

A. Sorrentino, M. Ferracin, G. Castelli, M. Biffoni, G. Tomaselli et al., Isolation and characterization of CD146+ multipotent mesenchymal stromal cells, Experimental Hematology, vol.36, issue.8, pp.1035-1046, 2008.
DOI : 10.1016/j.exphem.2008.03.004

B. Sacchetti, A. Funari, S. Michienzi, D. Cesare, S. Piersanti et al., Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment, Cell, vol.131, issue.2, pp.324-336, 2007.
DOI : 10.1016/j.cell.2007.08.025

E. Taira, K. Kohama, Y. Tsukamoto, S. Okumura, and N. Miki, Characterization of Gicerin/MUC18/CD146 in the rat nervous system, Journal of Cellular Physiology, vol.60, issue.3, pp.377-387, 2004.
DOI : 10.1002/1097-4547(20000615)60:6<714::AID-JNR3>3.0.CO;2-1

E. Taira, N. Takaha, H. Taniura, C. Kim, and N. Miki, Molecular cloning and functional expression of gicerin, a novel cell adhesion molecule that binds to neurite outgrowth factor, Neuron, vol.12, issue.4, pp.861-872, 1994.
DOI : 10.1016/0896-6273(94)90338-7

E. Taira, Y. Tsukamoto, K. Kohama, M. Maeda, H. Kiyama et al., Expression and involvement of gicerin, a cell adhesion molecule, in the development of chick optic tectum, Journal of Neurochemistry, vol.15, issue.4, pp.891-899, 2004.
DOI : 10.1001/archopht.1992.01080170018004

N. Bardin, M. Blot-chabaud, N. Despoix, A. Kebir, K. Harhouri et al., CD146 and its Soluble Form Regulate Monocyte Transendothelial Migration, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.5, pp.746-753, 2009.
DOI : 10.1161/ATVBAHA.108.183251

URL : https://hal.archives-ouvertes.fr/hal-00428932

M. Elshal, S. Khan, N. Raghavachari, Y. Takahashi, J. Barb et al., A unique population of effector memory lymphocytes MCAM and its Isoforms as Novel Targets in Angiogenesis Research and Therapy http, p.66765

A. Solovey, L. Gui, L. Chang, J. Enenstein, P. Browne et al., Identification and functional assessment of endothelial P1H12, Journal of Laboratory and Clinical Medicine, vol.138, issue.5, pp.322-331, 2001.
DOI : 10.1067/mlc.2001.118519

T. Kamiyama, H. Watanabe, M. Iijima, A. Miyazaki, and S. Iwamoto, Coexpression of CCR6 and CD146 (MCAM) is a marker of effector memory T-helper 17 cells, The Journal of Dermatology, vol.20, issue.10, 2012.
DOI : 10.1111/j.1600-0625.2011.01308.x

X. Yan, Y. Lin, D. Yang, Y. Shen, M. Yuan et al., A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth, Blood, vol.102, issue.1, pp.184-191, 2003.
DOI : 10.1182/blood-2002-04-1004

URL : http://www.bloodjournal.org/content/bloodjournal/102/1/184.full.pdf

J. Wellbrock and W. Fiedler, CD146: a new partner for VEGFR2. Blood, pp.2164-2165, 2012.

J. Stalin, K. Harhouri, L. Hubert, P. Garrigue, M. Nollet et al., Soluble CD146 boosts therapeutic effect of endothelial progenitors through proteolytic processing of short CD146 isoform, Cardiovascular Research, vol.15, issue.3, pp.240-251, 2016.
DOI : 10.1074/jbc.M407986200

URL : https://hal.archives-ouvertes.fr/hal-01456844

J. Stalin, K. Harhouri, L. Hubert, C. Subrini, D. Lafitte et al., Soluble Melanoma Cell Adhesion Molecule (sMCAM/sCD146) Promotes Angiogenic Effects on Endothelial Progenitor Cells through Angiomotin, Journal of Biological Chemistry, vol.92, issue.13, pp.8991-9000, 2013.
DOI : 10.1111/j.1538-7836.2008.03214.x

URL : http://www.jbc.org/content/288/13/8991.full.pdf

K. Harhouri, A. Kebir, B. Guillet, A. Foucault-bertaud, S. Voytenko et al., Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia. Blood, pp.3843-3851, 2010.
DOI : 10.1182/blood-2009-06-229591

URL : http://www.bloodjournal.org/content/bloodjournal/115/18/3843.full.pdf

G. Wu, Q. Peng, P. Fu, S. Wang, C. Chiang et al., Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells, Gene, vol.327, issue.2, pp.201-213, 2004.
DOI : 10.1016/j.gene.2003.11.018

Z. Wu, Z. Wu, J. Li, X. Yang, Y. Wang et al., MCAM is a novel metastasis marker and regulates spreading, apoptosis and invasion of ovarian cancer cells, Tumor Biology, vol.9, issue.5, pp.1619-1628
DOI : 10.1038/sj.cdd.4400987

C. Schiano, V. Grimaldi, A. Casamassimi, T. Infante, A. Esposito et al., Different expression of CD146 in human normal and osteosarcoma cell lines, Medical Oncology, vol.25, issue.4, pp.2998-3002, 2012.
DOI : 10.1038/sj.onc.1209080

E. Mcgary, A. Heimberger, L. Mills, K. Weber, G. Thomas et al., A fully human antimelanoma cellular adhesion molecule

M. Ilie, E. Long, V. Hofman, E. Selva, C. Bonnetaud et al., Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer, British Journal of Cancer, vol.100, issue.5, pp.1236-1243, 2014.
DOI : 10.1073/pnas.1111053108

K. Flanagan, K. Fitzgerald, J. Baker, K. Regnstrom, S. Gardai et al., Laminin-411 Is a Vascular Ligand for MCAM and Facilitates TH17 Cell Entry into the CNS, PLoS ONE, vol.88, issue.4, 2012.
DOI : 10.1371/journal.pone.0040443.s004

J. Johnson, M. Bar-eli, B. Jansen, and E. Markhof, Melanoma progression???associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand, International Journal of Cancer, vol.57, issue.5, pp.769-774, 1997.
DOI : 10.1007/978-3-642-61107-0_9

E. Taira, K. Kohama, Y. Tsukamoto, S. Okumura, and N. Miki, Gicerin/CD146 is involved in neurite extension of NGF-treated PC12 cells, Journal of Cellular Physiology, vol.268, issue.2, pp.632-637, 2005.
DOI : 10.1042/bst0200405

P. Bu, J. Zhuang, J. Feng, D. Yang, X. Shen et al., Visualization of CD146 dimerization and its regulation in living cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.4, pp.513-520, 2007.
DOI : 10.1016/j.bbamcr.2007.01.009

J. Zhuang, T. Jiang, D. Lu, Y. Luo, C. Zheng et al., NADPH oxidase 4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction, Free Radical Biology and Medicine, vol.49, issue.2, pp.227-236, 2010.
DOI : 10.1016/j.freeradbiomed.2010.04.007

T. Jiang, J. Zhuang, H. Duan, Y. Luo, Q. Zeng et al., CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis, Blood, vol.120, issue.11, 2012.
DOI : 10.1182/blood-2012-01-406108

N. Jouve, N. Despoix, M. Espeli, L. Gauthier, S. Cypowyj et al., The involvement of CD146 and its novel ligand Galectin

S. Tsuchiya, Y. Tsukamoto, E. Taira, and J. Lamarre, Involvement of transforming growth factor-beta in the expression of gicerin, a cell adhesion molecule, in the regeneration of hepatocytes, Int J Mol Med, vol.19, issue.3, pp.381-386, 2007.

S. Aldrian, F. Trautinger, I. Fröhlich, W. Berger, and M. Micksche, Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro, Cell Stress & Chaperones, vol.63, issue.2, pp.177-185, 2002.
DOI : 10.1379/1466-1268(2002)007<0177:OOHATM>2.0.CO;2

S. Aldrian, I. Kindas-mügge, F. Trautinger, I. Fröhlich, A. Gsur et al., Overexpression of Hsp27 in a human melanoma cell line: regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system, Cell Stress & Chaperones, vol.57, issue.3, pp.249-257, 2003.
DOI : 10.1379/1466-1268(2003)008<0249:OOHIAH>2.0.CO;2

G. Li, J. Kalabis, X. Xu, F. Meier, M. Oka et al., Reciprocal regulation of MelCAM and AKT in human melanoma, Oncogene, vol.22, issue.44, pp.6891-6899, 2003.
DOI : 10.1128/MCB.21.9.3192-3205.2001

C. Zheng, Y. Qiu, Q. Zeng, Y. Zhang, D. Lu et al., Endothelial CD146 is required for in vitro tumor-induced angiogenesis: The role of a disulfide bond in signaling and dimerization, The International Journal of Biochemistry & Cell Biology, vol.41, issue.11, pp.2163-2172, 2009.
DOI : 10.1016/j.biocel.2009.03.014

P. Bu, L. Gao, J. Zhuang, J. Feng, D. Yang et al., Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-??B activation, Molecular Cancer Therapeutics, vol.5, issue.11, pp.2872-2878, 2006.
DOI : 10.1158/1535-7163.MCT-06-0260

F. Anfosso, N. Bardin, E. Vivier, F. Sabatier, J. Sampol et al., Outside-in Signaling Pathway Linked to CD146 Engagement in Human Endothelial Cells, Journal of Biological Chemistry, vol.330, issue.2, 2001.
DOI : 10.1074/jbc.273.4.2384

Y. Luo, C. Zheng, J. Zhang, D. Lu, J. Zhuang et al., Recognition of CD146 as an ERM-binding protein offers novel mechanisms for melanoma cell migration, Oncogene, vol.57, issue.3, pp.306-321, 2012.
DOI : 10.1016/j.biocel.2009.03.014

E. Witze, E. Litman, G. Argast, R. Moon, and N. Ahn, Wnt5a Control of Cell Polarity and Directional Movement by Polarized Redistribution of Adhesion Receptors, Science, vol.24, issue.4, 2008.
DOI : 10.1038/nbt1191

Q. Liu, B. Zhang, X. Zhao, Y. Zhang, Y. Liu et al., Blockade of adhesion molecule CD146 causes pregnancy failure in mice, Journal of Cellular Physiology, vol.65, issue.3, pp.621-626, 2008.
DOI : 10.1016/S0015-0282(16)58144-8

I. Shih and R. Kurman, Expression of melanoma cell adhesion molecule in intermediate trophoblast, Lab Invest, vol.75, issue.3, pp.377-388, 1996.

E. Pasquier, N. Bardin, D. Saint-martin, L. , L. Martelot et al., The first assessment of soluble CD146 in women with unexplained pregnancy loss. A new insight? Thromb Haemost, pp.1280-1284, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00722043

L. Daniel, N. Bardin, V. Moal, F. Dignat-george, Y. Berland et al., Tubular CD146 Expression in Nephropathies Is Related to Chronic Renal Failure, Nephron Experimental Nephrology, vol.48, issue.4, pp.105-111, 2005.
DOI : 10.1172/JCI200215518

F. Wang, T. Xing, N. Wang, and L. Liu, Clinical significance of plasma CD146 and P-selectin in patients with type 2 diabetic nephropathy, Cytokine, vol.57, issue.1, pp.127-129, 2012.
DOI : 10.1016/j.cyto.2011.10.010

W. Weninger, M. Rendl, M. Mildner, C. Mayer, J. Ban et al., Keratinocytes Express the CD146 (Muc18/S-Endo) Antigen in Tissue Culture and During Inflammatory Skin Diseases11This work was supported by a grant from the Austrian Science Foundation (Grant P01437-MED)., Journal of Investigative Dermatology, vol.115, issue.2, pp.219-224, 2000.
DOI : 10.1046/j.1523-1747.2000.00039.x

M. Luca, B. Hunt, C. Bucana, J. Johnson, I. Fidler et al., Direct correlation between MUC18 expression and metastatic potential of human melanoma cells, Melanoma Research, vol.3, issue.1, pp.35-41, 1993.
DOI : 10.1097/00008390-199304000-00006

H. Schlagbauer-wadl, B. Jansen, M. Müller, P. Polterauer, K. Wolff et al., Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice, International Journal of Cancer, vol.10, issue.6, pp.951-955, 1999.
DOI : 10.1007/BF00132752

S. Xie, M. Luca, S. Huang, M. Gutman, R. Reich et al., Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis . Cancer Res, pp.2295-2303, 1997.

K. Watson-hurst and D. Becker, The role of N-cadherin, MCAM and beta3 integrin in melanoma progression, proliferation, migration and invasion, Cancer Biol Ther, 2006.

C. Sers, G. Riethmüller, and J. Johnson, MUC18, a melanoma-progression associated molecule , and its potential role in tumor vascularization and hematogenous spread. Cancer Res, pp.5689-5694, 1994.

F. Staquicini, A. Tandle, S. Libutti, J. Sun, M. Zigler et al., A subset of host B lymphocytes controls melanoma metastasis through a melanoma cell adhesion molecule/ MCAM and its Isoforms as Novel Targets in Angiogenesis Research and Therapy http, p.66765

M. Rapanotti, L. Bianchi, I. Ricozzi, E. Campione, A. Pierantozzi et al., Melanoma-associated markers expression in blood: MUC-18 is associated with advanced stages in melanoma patients, British Journal of Dermatology, vol.13, issue.2, 2009.
DOI : 10.1111/j.1365-2133.2008.08929.x

R. Pearl, M. Pacifico, P. Richman, G. Wilson, and R. Grover, Stratification of patients by melanoma cell adhesion molecule (MCAM) expression on the basis of risk: implications for sentinel lymph node biopsy, Journal of Plastic, Reconstructive & Aesthetic Surgery, vol.61, issue.3, pp.265-271, 2008.
DOI : 10.1016/j.bjps.2007.04.010

L. Mills, C. Tellez, S. Huang, C. Baker, M. Mccarty et al., Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma, Cancer Res, vol.62, issue.17, pp.5106-5114, 2002.