Enterococcus hirae, an unusual pathogen in humans causing urinary tract infection in a patient with benign prostatic hyperplasia: first case report in Algeria

Nadjette Bourafa, L. Loucif, N Boutefnouchet, Jean-Marc Rolain

To cite this version:
Nadjette Bourafa, L. Loucif, N Boutefnouchet, Jean-Marc Rolain. Enterococcus hirae, an unusual pathogen in humans causing urinary tract infection in a patient with benign prostatic hyperplasia: first case report in Algeria. New Microbes and New Infections, Wiley Online Library 2015, 8, pp.7-9. 10.1016/j.nmni.2015.08.003 . hal-01769615
Enterococcus hirae, an unusual pathogen in humans causing urinary tract infection in a patient with benign prostatic hyperplasia: first case report in Algeria

N. Bourafa1,2,3, L. Loucif1,4, N. Boutefnounchet1 and J.-M. Rolain1

1) Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France, 2) Laboratoire de microbiologie et biochimie appliquée, Département de biochimie, Université Badji mokhtar Annaba, 3) Département de biologie, Faculté des sciences de la nature et de la vie, Université Mohamed Cherif Messaadia-Souk-ahras and 4) Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Université El Hadj Lakhdar, Batna, Algeria

Abstract

Enterococcus hirae is a zoonotic pathogen rarely isolated from human infections. This case is the first description of E. hirae causing urinary tract infection in a diabetic man with benign prostatic hyperplasia from Algeria. The clinical isolate was identified by MALDI-TOF MS and displayed a multisensitivity antibiotic profile.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.

Keywords: Algeria, Enterococcus hirae, MALDI-TOF MS, prostate enlargement, urinary tract infection

Original Submission: 8 July 2015; Accepted: 10 August 2015

Article published online: 17 August 2015

Introduction

Enterococci are important opportunistic pathogens and have become increasingly known as a significant cause of nosocomial and community-acquired infections; Enterococcus faecalis and E. faecium are the most common species implicated [1]. E. hirae is known to cause infections in animals but is rarely isolated from human clinical samples [2]. In the present report, we describe a case of E. hirae causing urinary tract infection in a diabetic man with benign prostatic hyperplasia. This case represents the first report of infection by this organism in Algeria.

Case report

A 50-year-old man presented with a medical history of diabetes mellitus type 2 and had prostate enlargement for approximately 1 year. He was previously hospitalized twice as a result of an inability to fully empty his bladder. He underwent urinary catheterization; however, no antibacterial therapy was administered. The last hospitalization was 2 months before this present admission.

Clinically, the patient presented with symptoms shared between benign prostatic hyperplasia, including straining to urinate, weak urine stream and inability to fully empty the bladder, and symptomatic lower urinary tract infection, including dysuria with cloudy urine, suprapubic pain, urinary frequency and urgency. The patient had a negative blood culture; however, the microscopic analysis of urine indicated the presence of white blood cells (>10 leukocytes per high-power field). The urine culture was positive, and the isolate was identified using an API 20 Strep system (bioMérieux, Marcy l’Etoile, France) could not identify the species involved. Characterization of the clinical isolate to the species level using phenotypic methods including Gram staining, catalase test and growth on bile esculin azide agar and 6.5% NaCl media. The primary bacteriologic diagnosis indicated that the isolated strain belonged to the genus Enterococcus. The biochemical identification using an API 20 Strep system (bioMérieux, Marcy l’Etoile, France) could not identify the species involved. Characterization of the clinical isolate to the species level was achieved by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) (Microflex; Bruker Daltonics, Bremen, Germany) using Flex Control and Biotype 3.0 software (Bruker Daltonics) as previously described [3]. The identification of the strain by MALDI-TOF MS revealed the E. hirae species, with a correct identification score of 2.263. The isolate was multisensitive against nearly all antibiotics tested, including high-level (HL) aminoglycosides (HL gentamicin and HL kanamycin), ampicillin, linezolid, ciprofloxacin, nitrofurantoin and vancomycin. However, the...
strains presented resistance only to trimethoprim/sulfamethoxazole. The patient received oral treatment with amoxicillin for 10 days. A urethral catheter was inserted for 5 days to empty the bladder. Urine samples were analyzed during treatment until the culture result was negative. The clinical status of the patient improved after 5 days of hospitalization, and the patient was discharged after 10 days of hospitalization, and the patient was discharged and continued antibiotic therapy at home.

Discussion

Urinary tract infection (UTI) caused by enterococci is very common and is primarily due to E. faecalis and E. faecium species [4]. Most cases of urinary tract infections occur in women and are uncommon in men [5]. Prostate enlargement, also called benign prostatic hyperplasia, represents an important risk factor for UTI and bacterial prostatitis in men [5,6]. This structural abnormality is mainly associated with aging and most often affects men who are 60 years of age and older [7]. This chronic condition can prevent the bladder from emptying completely, which increases the likelihood that bacteria will grow and trigger an infection [6].

In our case, we report the occurrence of asymptomatic lower UTI in a diabetic patient with an enlarged prostate caused by an unusual pathogen in humans, E. hirae. Clinical diagnosis of our patient showed that the infection was limited to the lower urinary tract based on the absence of clinical signs related to upper UTI, such as flank pain, vomiting and nausea [4], and to prostatitis, such as prostate pain, fever, chills, body aches and perineal pain [5,8]. Notably, in addition to prostate enlargement, urinary tract instrumentation, infection with HIV, interventions of the male urogenital tract and underlying illnesses, such as diabetes, are the main predisposing risk factors for UTI in men [8,9]. In the current case, benign prostatic hyperplasia was the main factor for the occurrence of UTI. Nonetheless, diabetes and urinary catheter indwelling performed for this patient during the previous hospitalizations represent also two other factors that may increase the risk of UTI.

The causative agent isolated in this case was identified as E. hirae. This species causes infections in animals, but reported cases in humans are rare [2]. This species was identified for the first time in young chickens [4]. The first report of a human infection caused by E. hirae was described in 1998 by Gilad et al. [10] in a case of septicemia in a 49-year-old man with renal insufficiency treated with hemodialysis. Since then, few cases have been described in humans [2,4] (Table 1). Notably, among all enterococcal infections in humans, the low incidence of E. hirae species has previously been described [1,4]. The bacterium may be underdiagnosed or misdiagnosed by standard identification approaches [4]. Our case demonstrates that MALDI-TOF MS is an important tool useful for rapidly and accurately identifying unusual pathogens in humans.

TABLE 1. Case reports of Enterococcus hirae in human infections

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (years)/sex, country</th>
<th>Diagnosis</th>
<th>Predisposing factors</th>
<th>Method of E. hirae identification</th>
<th>Source of sample</th>
<th>Antibiotic treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49/M, Israel</td>
<td>Septicemia</td>
<td>Hemodialysis catheter</td>
<td>Rapid ID 32 Strept system (bioMérieux, Marcy l’Etoile, France)</td>
<td>Blood</td>
<td>VAN</td>
<td>[10]</td>
</tr>
<tr>
<td>2</td>
<td>72/M, France</td>
<td>Native valve Endocarditis</td>
<td>Coronary artery disease</td>
<td>VITEK 2 automated system (bioMérieux); 16S rRNA gene sequencing</td>
<td>Blood</td>
<td>AMP, GEN, RIF, VAN</td>
<td>[15]</td>
</tr>
<tr>
<td>3</td>
<td>55/M, Spain</td>
<td>Spondylodiscitis</td>
<td>Diabetes mellitus</td>
<td>Blood</td>
<td>AMP, GEN, LEV, SXT</td>
<td>[13]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78/F, France</td>
<td>Infective endocarditis</td>
<td>Diabetes mellitus, bioprosthetic valve</td>
<td>Blood</td>
<td>AMP, GEN, RIF</td>
<td>[16]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>62/F, Taiwan</td>
<td>Acute pyelonephritis</td>
<td>Unidentified</td>
<td>Blood</td>
<td>AMX</td>
<td>[4]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>86/F, Taiwan</td>
<td>Acute cholangitis</td>
<td>Unidentified</td>
<td>Blood</td>
<td>CFM</td>
<td>[4]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>61/M, Korea</td>
<td>Bacterial peritonitis</td>
<td>Liver cirrhosis</td>
<td>Automated MicroScan WalkAway system; sugar fermentation tests</td>
<td>Blood</td>
<td>AMP</td>
<td>[17]</td>
</tr>
<tr>
<td>8</td>
<td>44/M, France</td>
<td>Bacteremia Pyelonephritis</td>
<td>Alcoholic liver disease</td>
<td>MALDI-TOF MS</td>
<td>Blood</td>
<td>AMX, CFT, AMK</td>
<td>[14]</td>
</tr>
<tr>
<td>9</td>
<td>56/M, Brazil</td>
<td>Native Valve Endocarditis</td>
<td>Symptomatic lower UTI</td>
<td>MALDI-TOF MS</td>
<td>Blood</td>
<td>AMP, RIF, AMX</td>
<td>[2]</td>
</tr>
<tr>
<td>10</td>
<td>50/M, Algeria</td>
<td>Symptomatic lower UTI</td>
<td>Diabetes, cardiac arrhythmia, with surgical ablation BPH, diabetes mellitus, urinary catheterization</td>
<td>MALDI-TOF MS</td>
<td>Urine</td>
<td>AMP, GEN</td>
<td>This study</td>
</tr>
</tbody>
</table>

AMK, amikacin; AMP, ampicillin; AMX, amoxicillin; BPH, benign prostatic hyperplasia; CFM, cefametazole; CFT, ceftriaxone; CIP, ciprofloxacin; GEN, gentamicin; LEV, levofloxacin; MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; RIF, rifampin; SXT, trimethoprim/sulfamethoxazole; VAN, vancomycin.

Gene encoding manganese-dependent superoxide dismutase.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 8, 7–9

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
correctly identifying the pathogen at the species level without any complementary tests. The ability of MALDI-TOF MS to identify bacterial colonies from agar was evaluated for a broad range of clinically relevant bacterial strains. The proper identification to the species level is achieved in 80–95% of bacterial isolates [11]. Although the strain isolated in our patient showed been reported [13]. More importantly, enterococci long-term resistance of their transmission to other species of enterococci. The resistance of E. hirae to vancomycin and high-level gentamicin has also been reported [13]. More importantly, enterococci long-term urinary tract colonization can worsen and can lead to subsequent invasive infections, such as bacteremia [4,14].

In conclusion, we report the first case of symptomatic UTI involving E. hirae in a patient with benign prostatic hyperplasia from Algeria; this is the first report describing E. hirae in this country. This case emphasizes that MALDI-TOF MS is a powerful diagnostic tool for fast and accurate identification of this unusual pathogen at the species level.

Conflict of interest

None declared.

Acknowledgements

We are grateful to L. Hadjadj for technical assistance. We thank American Journal Experts for English-language editing. This work was partly funded by CNRS (CNRS 7278) and IHU Méditerranée Infection.

References

