Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases
Phuong Nguyen, Abdeldjalil Madani, Pierre Santucci, Benjamin Martin, Rishi R Paudel, Sandrine Delattre, Jean-Louis Herrmann, Christopher Spilling, Laurent Kremer, Jean-François Cavalier, et al.

To cite this version:
Submission to: International Journal of Antimicrobial Agents (IJAA)

Intended Category: Short Communication

Cyclophostin and Cyclipostins analogs, new promising molecules to treat mycobacterial-related diseases

Phuong Chi Nguyen1§, Abdeldjalil Madani1§, Pierre Santucci1, Benjamin P. Martin2, Rishi R. Paudel2, Sandrine Delattre3, Jean-Louis Herrmann3,4, Christopher D. Spilling2, Laurent Kremer5,6, Stéphane Canaan1* and Jean-François Cavalier1*

1 Aix-Marseille Univ, CNRS, EIPL, IMM FR3479, Marseille, France
2 Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
3 AP-HP, Hôpitaux Universitaires Ile de France Ouest, Ambroise Paré, Boulogne and Raymond Poincaré, Garches, France.
4 2I, UVSQ, INSERM UMR1173, Université Paris-Saclay, Versailles, France.
5 Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France.
6 IRIM, INSERM, 34293, Montpellier, France.
§ Authors have contributed equally to this work

Corresponding authors: J.-F. Cavalier (jfcavalier@imm.cnrs.fr) and S. Canaan (stephane.canaan@imm.cnrs.fr) EIPL UMR7282, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. Tel.: +33 491164093.
ABSTRACT

The progression of mycobacterial diseases requires the development of new therapeutics. Here, we evaluated the efficacy and selectivity of a panel of Cyclophostin and Cyclipostins analogs (CyCs) against various bacteria and mycobacteria. The activity of these 26 CyCs was first assayed using the agar plate method. Compounds exhibiting a 50-100% growth inhibition rate were then selected to determine their MIC using the REMA assay. The best drug candidate was further tested against mycobacterial clinical isolates and bacteria responsible for nosocomial infections. These included 6 Gram-negative, 5 Gram-positive bacteria, 29 rapid-growing mycobacteria belonging to the M. chelonae-abscessus clade and 3 slow-growing mycobacteria (Mycobacterium marinum, Mycobacterium bovis BCG, Mycobacterium tuberculosis). Among the 26 CyCs tested, 10 were active and their inhibitory activity was exclusively restricted to mycobacteria. The best candidate, CyC17, further tested on the 26 clinical strains showed a high selectivity for mycobacteria with MIC values (<2 up to 40 µg/mL) comparable to those of most classical antibiotics used to treat M. abscessus infections. Together, these results support the fact that such CyCs represent a new family of potent and selective inhibitors against mycobacteria. This is of particular interest for future chemotherapeutic developments against mycobacterial-associated infections, especially against M. abscessus the most drug-resistant mycobacterial species.

KEYWORDS
Cyclipostins, Cyclophostin, anti-mycobacterial agents, drug susceptibility, Mycobacterium abscessus.
1. Introduction

The *Mycobacterium* genus comprises more than 200 species classified mainly on their pathogenicity and growth rates. Mycobacteria can be separated into rapidly-growing mycobacteria (RGM) that include saprophytic species and opportunistic species such as the *M. abscessus* complex, *M. chelonae* and *M. fortuitum*; and slow-growing mycobacteria (SGM) comprising strict and opportunistic pathogens, such as the *M. tuberculosis* complex and the *M. avium* complex, respectively [1]. Treatment of mycobacterial infections remains challenging, essentially because of the presence of a complex lipid-rich cell wall [2], whose general composition and architecture is shared by both RGM and SGM and which contributes to its low permeability to many antibiotics, thus limiting the therapeutic options. In addition, the treatment duration is long, ranging from 6 to 9 months for tuberculosis and for up to 2 years for several mycobacterial lung infections due to atypical mycobacteria, such as *M. kansasii* or *M. abscessus*. The emergence of multi-drug resistant mycobacteria such as *M. abscessus*, or *M. tuberculosis* isolates (responsible for MDR-TB) strongly impacts the treatment success rates with an increased incidence of treatment failure and death [3]. Another major issue relates to the emergence of RGM-caused infections [4]. Among them, the difficult-to-manage *M. abscessus* complex represents one of the most drug-resistant for which standardized chemotherapeutic regimens are still lacking [5]. Therefore, more efficient anti-mycobacterial agents are needed.

Previously, we evaluated analogues of natural Cyclophostin and Cyclipostins (CyCs) for their activity against *M. tuberculosis* and demonstrated that they efficiently inhibited *M. tuberculosis* growing either extracellularly or within macrophages [6]. Of major importance, no cytotoxicity towards the host mammalian cells has been observed for these CyC compounds at concentrations up to 100 µM (Table 2) [6]. Using competitive labelling/enrichment assays and mass spectrometry, 23 putative CyC targets were identified, all belonging to the
serine/cysteine hydrolase family proteins known to play a role in the lifecycle and/or pathogenesis of *M. tuberculosis* [7].

Herein, we examined the selectivity and activity of a set of 26 CyC analogs (Figure S1) against a variety of Gram-positive and Gram-negative bacteria. We also included a large panel of mycobacterial clinical isolates. Our results strongly support the potent and specific activity of CyCs against mycobacteria. These molecules constitute an unexploited chemical class of active compounds with promising translational development possibilities for the treatment of mycobacterial infections.

2. Materials and Methods

2.1. Synthesis of Cyclipostins and Cyclophostin (CyC) analogs.

The 26 CyC analogs were previously synthesized and obtained at 98% purity as reported in [8-10]. Stock solutions (4 mg/mL) of each CyC were prepared in dimethyl sulfoxide (DMSO) prior to susceptibility testing.

2.2. Bacterial strains and growth condition.

Six Gram-negative, 5 Gram-positive bacteria, 29 RGM (mainly clinical isolates) and 3 SGM were included in this study (Table 1). The clinical isolates were collected during the epidemiological study performed in 2004 [11] and include representatives of the *M. chelonae-abscessus* clade (10 *M. abscessus*, 4 *M. massiliense*, 2 *M. bolletii*, and 10 *M. chelonae* strains) obtained from either cystic fibrosis patients (CF isolates) or non-cystic fibrosis patients (non-CF isolates). *M. smegmatis* mc²155 strain was routinely grown in Middlebrook 7H9 broth (BD Difco) supplemented with 0.2% glycerol, 0.05% Tween 80 (Sigma-Aldrich) (7H9-S). *M. marinum* ATCC BAA-535/M, *M. bovis* BCG Pasteur, *M. abscessus* CIP104536 with either a smooth (S) or rough (R) morphotype, and *M. tuberculosis* mc²6230 (H37Rv ΔRD1 ΔpanCD [12]) strains were grown in this 7H9-S medium supplemented with 10% oleic acid, albumin,
dextrose, catalase (OADC enrichment; BD Difco) (7H9-S_{OADC}). In the case of M. tuberculosis mc²6230, 24 µg/mL D-panthothenate (Sigma-Aldrich) was also added in the 7H9-S_{OADC} medium. All cultures were kept at 37°C without shaking, except M. marinum which was grown at 32°C. The 5 Gram-positive strains (i.e., Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus epidermidis, Enterococcus faecium) and the 6 Gram-negative strains (i.e., Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Serratia marcescens, Stenotrophomonas maltophilia, Burkholderia cepacia complex) were grown at 37°C in LB Broth Base medium (ThermoFisher Scientific).

2.3. Drug susceptibility testing on solid medium.

This was performed in 24-well suspension culture plates (Greiner bio-one) as described in [13]. E. coli and P. aeruginosa were grown on LB agar medium at 37°C. All mycobacteria were grown at either 32°C (M. marinum) or 37°C (M. smegmatis, M. bovis BCG, M. abscessus S and R variants, and M. tuberculosis mc²6230) on Middlebrook 7H10 agar (BD Difco) supplemented with 10% OADC and 24 µg/mL D-panthothenate (M. tuberculosis mc²6230). The wells were filled with 1 mL of the appropriate medium containing each of the CyC analogs at a single 30 µM final concentration. Each screening plate contained negative (DMSO) and positive (50 µM antibiotics) controls, as well as one well for sterility control (i.e., medium alone). For the 100% inhibition control we used 50 µM kanamycin (Sigma Aldrich) for M. marinum, M. abscessus, M. smegmatis, M. bovis BCG, M. tuberculosis and E. coli; and 50 µM carbenicillin (Sigma Aldrich) for P. aeruginosa. Each well was spotted with 10 µL of a bacterial culture at 5 × 10⁵ cells/mL. Incubation time varied from 1 day to 2 weeks depending on the strain tested. The CyC compounds leading to a minimum of 50% growth inhibition were selected for subsequent minimal inhibitory concentrations (MIC) determination using the REMA assay.

2.4. Resazurin microtiter assay (REMA) for MIC determination.
Susceptibility testing was performed using the Middlebrook 7H9 broth microdilution method. All assays for each strain were carried out at least in triplicate. MICs of the CyCs, selected from solid medium screening against the various bacterial strains, were determined in 96-well flat-bottom Nunclon Delta Surface microplates with lid (ThermoFisher Scientific, ref. 167008) using the resazurin microtiter assay (REMA [14, 15]). Briefly, log-phase bacteria were diluted to a cell density of 5×10^6 cells/mL in 7H9-SOADC (7H9 broth + 10% OADC + 0.2% glycerol + 0.05% Tween 80, and 24 µg/mL D-panthothenate when needed). Then 100 µL of the above inoculum (i.e., 5×10^5 cells per well) was added to each well containing 100 µL 7H9-SOADC medium, serial two-fold dilutions of the selected CyC analog or controls to a final volume of 200 µL. Growth controls containing no inhibitor (i.e., bacteria only = B), inhibition controls containing 50 µg/mL kanamycin and sterility controls (i.e., medium only = M) without inoculation were also included. Plates were incubated at 37°C (32°C for M. marinum) in a humidity chamber [16] to prevent evaporation for either 3-5 days (M. smegmatis, M. abscessus) or 10-14 days (M. marinum, M. bovis BCG, M. tuberculosis mc^26230). Then, 20 µL of a 0.025% (w/v) resazurin solution was added to each well, and the plates were incubated at 37°C for color change from blue to pink or violet and for a reading of fluorescence units (FU). Fluorescence corresponding to the resazurin reduction to its metabolite resorufin was quantified using a Tecan Spark 10M multimode microplate reader (Tecan Group Ltd, France) with excitation at 530 nm and emission at 590 nm. For fluorometric MIC determinations, a background subtraction was performed on all wells with a mean of M wells. Relative fluorescence units were defined as: RFU% = (test well FU/mean FU of B wells) × 100. MIC values were determined by fitting the RFU% sigmoidal dose-response curves [15] in Kaleidagraph 4.2 software (Synergy Software). The lowest drug concentrations inhibiting 90% of growth were defined as the MIC$_{90}$. Isoniazid (INH), amikacin (AMK), imipenem (IPM) and cefoxitin (FOX) were used as reference drugs.
3. Results and Discussion

3.1. Screen of CyCs susceptibility testing on solid medium

To explore the efficacy and the antibacterial spectrum of the CyC analogues, a preliminary screen on solid medium was first performed with the each of the 26 CyCs at a fixed 30 µM final concentration using a selected panel consisting of 6 mycobacterial species (i.e., *M. smegmatis*, *M. marinum*, *M. abscessus* R and S, *M. bovis* BCG and *M. tuberculosis* mc²6230) and 2 Gram-negative bacteria (i.e., *Escherichia coli* and *Pseudomonas aeruginosa*). After a period of incubation (from 1 day to 2 weeks), 10 out of the 26 CyCs were found to inhibit growth in the range of 50-100% relative to the positive growth control (i.e., bacteria without antibiotics). Remarkably, this effect was restricted to mycobacteria only (see Table S1), while under the same conditions, the growth of *E. coli* and *P. aeruginosa* was not impacted.

3.2. MIC determination

The potency of the selected CyC7(α,β), CyC8(α,β), CyC9(β), CyC10(α), CyC11, CyC17 and CyC18(β) was next confirmed by determining their MICs towards each respective mycobacterial strain, using the REMA assay [14, 15] (Table 2). Nearly all selected CyCs were active against *M. marinum* and *M. bovis* BCG growth with moderate (4.2-25.9 µg/mL) to good (0.6-2.2 µg/mL) MIC₉₀. Moreover, the obtained MICs against *M. tuberculosis* mc²6230 were consistent with those recently reported against *M. tuberculosis* H37Rv extracellular growth [6]. Among the 10 CyCs tested, only CyC18(β) and CyC17 inhibited the growth of all mycobacteria investigated with MICs ranging from 0.18 to 11.2 µg/mL (Table 2). Of importance, CyC17 was also highly active against both R and S variants of *M. abscessus* with a lower MIC (0.18 µg/mL and 6.4 µg/mL against *M. abscessus* R and S, respectively) than AMK, IMP and FOX used as reference drugs (Table 2) as well as most conventional antibiotics used in clinical settings [17].
3.3. Potency and selectivity of the best CyC₁₇ inhibitor against clinical isolates.

The CyC₁₇ efficiency/selectivity was investigated deeper by testing its activity towards 26 clinical isolates belonging to the M. chelonae-abscessus clade and several Gram-negative and Gram-positive bacterial species (Table 3). As anticipated, CyC₁₇ was only active against M. abscessus and M. chelonae isolates (Table 3). Of interest, MIC₅₀ values for M. abscessus and M. chelonae (10 and 40 µg/mL, respectively) were comparable to those of amikacin (12.5 µg/mL) [18], cefoxitin (32 µg/mL) or imipenem (16 µg/mL) [19]. M. abscessus complex isolates were also more sensitive than M. chelonae isolates, with M. bolletii appearing as the most susceptible organism (Table 3).

Overall, these results confirm the potential of CyCs as promising anti-mycobacterial candidates. This selective activity against mycobacteria might be related to the cell envelope composition [2] which is unique, and/or to the increased ability of these hydrophobic compounds to cross this lipid-rich cell wall barrier. This hypothesis is relevant with the recent identification of potential targets for CyC₁₇ which are mostly involved in M. tuberculosis lipid metabolism and/or in cell wall biosynthesis, such as the Antigen 85 complex playing key role in mycolic acid metabolism, which is restricted to mycobacteria [6].

4. Conclusion

Taking into account all these results, we thus propose the CyCs analogs to be considered as selective inhibitors of mycobacteria and attractive candidates to be further exploited in the fight against mycobacterial-related diseases. Additionally, CyC₁₇ was found to be active against the multi-resistant species of the M. abscessus complex. Further work to decipher the physiological target(s) of CyC₁₇ and to elucidate its mode of action in M. abscessus is currently in progress.
This study was supported by the CNRS. P.C. Nguyen was supported by the PhD Training program from the University of Science and Technology of Hanoi. A. Madani was supported by a PhD fellowship from the Association Grégory Lemarchal and Vaincre la Mucoviscidose (projet n°RF20160501651) and P. Santucci received financial support for his PhD fellowship from the Ministère de l'Enseignement Supérieur et de la Recherche, France.

M. Gimenez, Dr. B. Ize and Prof. S. Bleves are acknowledged for providing the electronic microscopy picture of Pseudomonas aeruginosa displayed in Graphical Abstract.

None.

Not required.

Supplementary data associated with this article can be found in the online version.
References

Table 1.

Bacterial strains used in the study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Bacterial strains</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram negative bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli DH10B</td>
<td>Reference strain</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa PA01</td>
<td>Reference strain</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Burkholderia cepacia complex*</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Gram positive bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>Clinical isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>Mycobacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. bovis BCG Pasteur</td>
<td>Reference strain</td>
<td></td>
</tr>
<tr>
<td>M. tuberculosis mc²6230</td>
<td>Reference strain</td>
<td>[12]</td>
</tr>
<tr>
<td>M. marinum M</td>
<td>Reference strain</td>
<td></td>
</tr>
<tr>
<td>M. smegmatis mc²155</td>
<td>Reference strain</td>
<td></td>
</tr>
<tr>
<td>M. abscessus CIP 104536T</td>
<td>Reference strain</td>
<td></td>
</tr>
<tr>
<td>M. abscessus (RPC95)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC96)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC98)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC101)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC102)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC104)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC105)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC106)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC109)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. abscessus (RPC110)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. massiliense (RPC99)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. massiliense (RPC100)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. massiliense (RPC107)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. massiliense (RPC103)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. bolletii (RPC97)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. bolletii (RPC108)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC128)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC129)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC130)</td>
<td>CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC131)</td>
<td>Non-CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC057)</td>
<td>Non-CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC059)</td>
<td>Non-CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>M. chelonae (RPC061)</td>
<td>Non-CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC063)</td>
<td>Non-CF isolate</td>
<td>[11]</td>
</tr>
<tr>
<td>M. chelonae (RPC066)</td>
<td>Non-CF isolate</td>
<td>[11]</td>
</tr>
</tbody>
</table>
Table 2.
Antibacterial activities of the selected active CyC compounds as compared to four standard antimicrobial agents against a first panel of mycobacterial strains

<table>
<thead>
<tr>
<th>Compounds</th>
<th>MIC<sub>90</sub> (µg/mL) <sup>a</sup></th>
<th>CC<sub>50</sub> <sup>b</sup> (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. smegmatis mc²155</td>
<td>M. abscessus CIP 104536<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Smooth</td>
<td>Rough</td>
</tr>
<tr>
<td>CyC<sub>7(a)</sub></td>
<td>11.8</td>
<td>25.9</td>
</tr>
<tr>
<td>CyC<sub>7(β)</sub></td>
<td>2.2</td>
<td>17.7</td>
</tr>
<tr>
<td>CyC<sub>8(a)</sub></td>
<td>0.63</td>
<td>8.5</td>
</tr>
<tr>
<td>CyC<sub>8(β)</sub></td>
<td>4.2</td>
<td>9.3</td>
</tr>
<tr>
<td>CyC<sub>9(β)</sub></td>
<td>7.8</td>
<td>26.2</td>
</tr>
<tr>
<td>CyC<sub>10(a)</sub></td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>CyC<sub>11</sub></td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>CyC<sub>17</sub></td>
<td>0.81</td>
<td>6.4</td>
</tr>
<tr>
<td>CyC<sub>18(a)</sub></td>
<td>7.8</td>
<td>9.6</td>
</tr>
<tr>
<td>CyC<sub>18(β)</sub></td>
<td>6.7</td>
<td>6.0</td>
</tr>
<tr>
<td>INH</td>
<td>5.6</td>
<td>9.3</td>
</tr>
<tr>
<td>AMK</td>
<td>4.7</td>
<td>7.9</td>
</tr>
<tr>
<td>IPM</td>
<td>1.9</td>
<td>8.9</td>
</tr>
<tr>
<td>FOX</td>
<td>4.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

^a MIC₉₀ corresponding to the concentration leading to 90% growth inhibition as determined by the REMA assay, are expressed as mean values of two independent assays performed in triplicate (CV% < 5%).^b CC₅₀: compound concentration leading to 50% cell toxicity, determined on murine (raw264.7) macrophages – data from [6]. INH: isoniazid; AMK: amikacin; IPM: imipenem; FOX: cefoxitin.
Table 3.

MICs (in μg/mL) of CyC17 on a panel of *M. abscessus* and *M. chelonae* clinical strains isolated from cystic fibrosis and non-cystic fibrosis patients a

<table>
<thead>
<tr>
<th>Clinical isolates (number of strains)</th>
<th>N° of strains with indicated MIC</th>
<th>MIC$_{50}$</th>
<th>MIC$_{90}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Mycobacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (26)</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>M. abscessus (10)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>M. massiliense (4)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>M. bolletii (2)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M. chelonae (10)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkholderia cepacia complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a MICs are expressed as mean values of triplicate. Respective MIC$_{50}$ / MIC$_{90}$ values of standard antimicrobial agents against the *M. chelonae* – *M. abscessus* clinical isolates: imipenem 16 / 32 μg/mL and cefoxitin 32 / 64 μg/mL [19].