K. Dheda, T. Gumbo, G. Maartens, K. E. Dooley, R. Mcnerney et al., The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis, The Lancet Respiratory Medicine, vol.5, issue.4, pp.291-360, 2017.
DOI : 10.1016/S2213-2600(17)30079-6

C. E. Barry and K. Mdluli, Drug sensitivity and environmental adaptation of myocobacterial cell wall components, Trends in Microbiology, vol.4, issue.7, pp.275-281, 1996.
DOI : 10.1016/0966-842X(96)10031-7

P. J. Brennan and H. Nikaido, The Envelope of Mycobacteria, Annual Review of Biochemistry, vol.64, issue.1, pp.29-63, 1995.
DOI : 10.1146/annurev.bi.64.070195.000333

K. Mikusová, R. A. Slayden, G. S. Besra, and P. J. Brennan, Biogenesis of the mycobacterial cell wall and the site of action of ethambutol, Antimicrobial Agents and Chemotherapy, vol.39, issue.11, pp.2484-2489, 1995.
DOI : 10.1128/AAC.39.11.2484

C. Vilchèze, F. Wang, M. Arai, M. H. Hazbón, R. Colangeli et al., Transfer of a point mutation in Mycobacterium tuberculosis??inhA resolves the target of isoniazid, Nature Medicine, vol.49, issue.9, pp.1027-1029, 2006.
DOI : 10.1128/AAC.49.2.708-720.2005

M. Matsumoto, H. Hashizume, T. Tomishige, M. Kawasaki, H. Tsubouchi et al., OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis In Vitro and In Mice, PLoS Medicine, vol.293, issue.11, p.466, 2006.
DOI : 10.1371/journal.pmed.0030466.st001

K. Tahlan, R. Wilson, D. B. Kastrinsky, K. Arora, V. Nair et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.4, pp.1797-1809, 2012.
DOI : 10.1128/AAC.05708-11

G. Harth, B. Y. Lee, J. Wang, D. L. Clemens, and M. A. Horwitz, Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis, Infect. Immun, vol.64, pp.3038-3047, 1996.

J. T. Belisle, V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan et al., Role of the Major Antigen of Mycobacterium tuberculosis in Cell Wall Biogenesis, Science, vol.276, issue.5317, pp.1420-1422, 1997.
DOI : 10.1126/science.276.5317.1420

M. Jackson, C. Raynaud, M. A. Lanéelle, C. Guilhot, C. Laurent-winter et al., Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope, Molecular Microbiology, vol.158, issue.5, pp.1573-1587, 1999.
DOI : 10.1074/jbc.272.15.10041

L. Kremer, W. N. Maughan, R. A. Wilson, L. G. Dover, and G. S. Besra, The M. tuberculosis antigen 85 complex and mycolyltransferase activity, Letters in Applied Microbiology, vol.68, issue.4, pp.233-237, 2002.
DOI : 10.1038/72413

L. Y. Armitige, C. Jagannath, A. R. Wanger, N. , and S. J. , Disruption of the Genes Encoding Antigen 85A and Antigen 85B of Mycobacterium tuberculosis H37Rv: Effect on Growth in Culture and in Macrophages, Infection and Immunity, vol.68, issue.2, pp.767-778, 2000.
DOI : 10.1128/IAI.68.2.767-778.2000

L. Nguyen, S. Chinnapapagari, and C. J. Thompson, FbpA-Dependent Biosynthesis of Trehalose Dimycolate Is Required for the Intrinsic Multidrug Resistance, Cell Wall Structure, and Colonial Morphology of Mycobacterium smegmatis, Journal of Bacteriology, vol.187, issue.19, pp.6603-6611, 2005.
DOI : 10.1128/JB.187.19.6603-6611.2005

V. Puech, C. Guilhot, E. Perez, M. Tropis, L. Y. Armitige et al., Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis, Molecular Microbiology, vol.272, issue.4, pp.1109-1122, 2002.
DOI : 10.1074/jbc.272.15.10041

R. A. Wilson, S. Rai, W. N. Maughan, L. Kremer, B. M. Kariuki et al., ), Acta Crystallographica Section D Biological Crystallography, vol.59, issue.12, pp.2303-2305, 2003.
DOI : 10.1107/S0907444903020456

R. A. Wilson, W. N. Maughan, L. Kremer, G. S. Besra, and K. Fütterer, The Structure of Mycobacterium tuberculosis MPT51 (FbpC1) Defines a New Family of Non-catalytic ??/?? Hydrolases, Journal of Molecular Biology, vol.335, issue.2, pp.519-530, 2004.
DOI : 10.1016/j.jmb.2003.11.001

D. R. Ronning, T. Klabunde, G. S. Besra, V. D. Vissa, J. T. Belisle et al., Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase, Nat. Struct. Biol. CrossRef Medline J. Mol. Biol, vol.7, issue.307, pp.141-146, 2000.

D. R. Ronning, V. Vissa, G. S. Besra, J. T. Belisle, and J. C. Sacchettini, Antigen 85A and 85C Structures Confirm Binding Orientation and Conserved Substrate Specificity, Journal of Biological Chemistry, vol.67, issue.35, pp.36771-36777, 2004.
DOI : 10.1128/IAI.72.4.2014-2021.2004

M. Daffé, The mycobacterial antigens 85 complex ??? from structure to function and beyond, Trends in Microbiology, vol.8, issue.10, pp.438-440, 2000.
DOI : 10.1016/S0966-842X(00)01844-8

L. Favrot, R. , and D. R. , Targeting the mycobacterial envelope for tuberculosis drug development, Expert Review of Anti-infective Therapy, vol.4, issue.9, pp.1023-1036, 2012.
DOI : 10.1126/scitranslmed.3004395

J. D. Rose, J. A. Maddry, R. N. Comber, W. J. Suling, L. N. Wilson et al., Synthesis and biological evaluation of trehalose analogs as potential inhibitors of mycobacterial cell wall biosynthesis, Carbohydrate Research, vol.337, issue.2, pp.105-120, 2002.
DOI : 10.1016/S0008-6215(01)00288-9

C. S. Barry, K. M. Backus, C. E. Barry, D. , and B. G. , ESI-MS Assay of M. tuberculosis Cell Wall Antigen 85 Enzymes Permits Substrate Profiling and Design of a Mechanism-Based Inhibitor, Journal of the American Chemical Society, vol.133, issue.34, pp.13232-13235, 2011.
DOI : 10.1021/ja204249p

T. Warrier, M. Tropis, J. Werngren, A. Diehl, M. Gengenbacher et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.4, pp.1735-1743, 2010.
DOI : 10.1128/AAC.05742-11

L. Favrot, A. E. Grzegorzewicz, D. H. Lajiness, R. K. Marvin, J. Boucau et al., Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen, Nature Communications, vol.276, 2013.
DOI : 10.1107/S0907444910007493

L. Favrot, D. H. Lajiness, R. , and D. R. , Antigen 85 Complex by Covalent, Allosteric Inhibitors, Journal of Biological Chemistry, vol.157, issue.36, pp.25031-25040, 2014.
DOI : 10.1038/nchembio.539

V. Point, R. K. Malla, S. Diomande, B. P. Martin, V. Delorme et al., Synthesis and Kinetic Evaluation of Cyclophostin and Cyclipostins Phosphonate Analogs As Selective and Potent Inhibitors of Microbial Lipases, Journal of Medicinal Chemistry, vol.55, issue.22, pp.10204-10219
DOI : 10.1021/jm301216x

Y. Liu, M. P. Patricelli, C. , and B. F. , Activity-based protein profiling: The serine hydrolases, Proceedings of the National Academy of Sciences, vol.19, issue.11, pp.14694-14699, 1999.
DOI : 10.1002/elps.1150191103

A. A. Elamin, M. Stehr, R. Spallek, M. Rohde, and M. Singh, The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation, Molecular Microbiology, vol.49, issue.6, pp.1577-1592, 2011.
DOI : 10.1194/jlr.R800018-JLR200

D. L. Lakey, R. K. Voladri, K. M. Edwards, C. Hager, B. Samten et al., Enhanced Production of Recombinant Mycobacterium tuberculosis Antigens in Escherichia coli by Replacement of Low-Usage Codons, CrossRef Medline Inhibition of Ag85C by cyclipostins and cyclophostin, pp.233-238, 2000.
DOI : 10.1128/IAI.68.1.233-238.2000

J. Daniel, C. Deb, V. S. Dubey, T. D. Sirakova, B. Abomoelak et al., Induction of a Novel Class of Diacylglycerol Acyltransferases and Triacylglycerol Accumulation in Mycobacterium tuberculosis as It Goes into a Dormancy-Like State in Culture, Journal of Bacteriology, vol.186, issue.15, pp.5017-5030, 2004.
DOI : 10.1128/JB.186.15.5017-5030.2004

K. Huygen, E. Lozes, B. Gilles, A. Drowart, K. Palfliet et al., Mapping of TH1 helper T-cell epitopes on major secreted mycobacterial antigen 85A in mice infected with live Mycobacterium bovis BCG, Infect. Immun, vol.62, pp.363-370, 1994.

J. Daniel, H. Maamar, C. Deb, T. D. Sirakova, and P. E. Kolattukudy, Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages, PLoS Pathogens, vol.11, issue.259, p.1002093, 2011.
DOI : 10.1371/journal.ppat.1002093.t003

N. J. Garton, H. Christensen, D. E. Minnikin, R. A. Adegbola, and M. R. Barer, Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum, Microbiology, vol.39, issue.10, pp.2951-2958, 2002.
DOI : 10.1164/arrd.1972.106.3.450

R. Dhouib, A. Ducret, P. Hubert, F. Carrière, S. Dukan et al., Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1811, issue.4, pp.234-241, 2011.
DOI : 10.1016/j.bbalip.2011.01.001

R. Kalscheuer and A. Steinbüchel, ADP1, Journal of Biological Chemistry, vol.5, issue.10, pp.8075-8082, 2003.
DOI : 10.1016/0022-2836(82)90515-0

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence, PLoS Pathogens, vol.39, issue.11, 2008.
DOI : 10.1371/journal.ppat.1000204.s002

P. Santucci, F. Bouzid, N. Smichi, I. Poncin, L. Kremer et al., Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis, Frontiers in Cellular and Infection Microbiology, vol.24, issue.98, p.122, 2016.
DOI : 10.1016/j.ceb.2012.05.012

URL : https://hal.archives-ouvertes.fr/hal-01455789

J. Lehmann, T. Cheng, A. Aggarwal, A. S. Park, E. Zeiler et al., An Antibacterial ??-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis, Angewandte Chemie International Edition, vol.10, issue.1, pp.348-353, 2018.
DOI : 10.1586/eri.12.91

URL : http://onlinelibrary.wiley.com/doi/10.1002/anie.201709365/pdf

C. M. Goins, S. Dajnowicz, S. Thanna, S. J. Sucheck, J. M. Parks et al., by Ebselen Derivatives, ACS Infectious Diseases, vol.3, issue.5, pp.378-387, 2017.
DOI : 10.1021/acsinfecdis.7b00003

P. C. Nguyen, A. Madani, P. Santucci, B. P. Martin, R. Paudel et al., Cyclophostin and cyclipostins analogs, new promising molecules to treat mycobacterial-related diseases Mycobacterium tuberculosis RD1 panCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis, Int. J. Antimicrob. Agents Vaccine, vol.10, issue.24, pp.6309-6320, 2006.

K. L. Heckman and L. R. Pease, Gene splicing and mutagenesis by PCR-driven overlap extension, Nature Protocols, vol.2, issue.4, pp.924-932, 2007.
DOI : 10.1038/nprot.2007.132

L. Kremer, L. G. Dover, H. R. Morbidoni, C. Vilchèze, W. N. Maughan et al., Inhibition of InhA Activity, but Not KasA Activity, Induces Formation of a KasA-containing Complex in Mycobacteria, Journal of Biological Chemistry, vol.4, issue.23, pp.20547-20554, 2003.
DOI : 10.1038/351456a0

E. Vasilieva, S. Dutta, R. K. Malla, B. P. Martin, C. D. Spilling et al., Rat hormone sensitive lipase inhibition by cyclipostins and their analogs, Bioorganic & Medicinal Chemistry, vol.23, issue.5, pp.944-952, 2015.
DOI : 10.1016/j.bmc.2015.01.028

URL : http://europepmc.org/articles/pmc4340684?pdf=render

L. Kremer, Y. Guérardel, S. S. Gurcha, C. Locht, and G. S. Besra, Temperature-induced changes in the cell-wall components of Mycobacterium thermoresistibile, Microbiology, vol.29, issue.10, pp.3145-3154, 2002.
DOI : 10.1046/j.1365-2958.1998.01026.x

G. D. Coxon, D. Craig, R. M. Corrales, E. Vialla, L. Gannoun-zaki et al., Synthesis, Antitubercular Activity and Mechanism of Resistance of Highly Effective Thiacetazone Analogues, PLoS ONE, vol.6, issue.1, p.53162, 2013.
DOI : 10.1371/journal.pone.0053162.t003

W. Kabsch, Integration, scaling, space-group assignment and post-refinement, Acta Crystallographica Section D Biological Crystallography, vol.34, issue.2, pp.133-144, 2010.
DOI : 10.1107/S0907444909047374

URL : http://journals.iucr.org/d/issues/2010/02/00/dz5178/dz5178.pdf

A. K. Sanki, J. Boucau, F. E. Umesiri, D. R. Ronning, and S. J. Sucheck, Design, synthesis and biological evaluation of sugar-derived esters, ??-ketoesters and ??-ketoamides as inhibitors for Mycobacterium tuberculosis antigen 85C, Molecular BioSystems, vol.60, issue.9, pp.945-956, 2009.
DOI : 10.1093/clinids/24.5.982

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, N. Echols et al., The Phenix software for automated determination of macromolecular structures, Methods, vol.55, issue.1, pp.94-106, 2011.
DOI : 10.1016/j.ymeth.2011.07.005