J. M. Lehmann, B. Holzmann, E. W. Breitbart, P. Schmiegelow, G. Riethmüller et al., Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res Biosynthesis and production of a soluble form in human cultured endothelial cells, FEBS Lett, vol.47, issue.421, pp.841-845, 1987.

F. Sabatier, CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo, Circ. Res. J.; Nollet, M, vol.107, pp.66-75, 2010.

A. Foucault-bertaud and L. Fugazza, Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors, Oncogene, vol.35, pp.5489-5500, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456904

E. Lamy, F. Vely, and P. Pisano, Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia, Blood, vol.115, pp.3843-3851, 2010.

N. Bardin, N. Despoix, A. Kebir, K. Harhouri, J. Arsanto et al., CD146 and its Soluble Form Regulate Monocyte Transendothelial Migration, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.5, pp.746-753, 2009.
DOI : 10.1161/ATVBAHA.108.183251

URL : https://hal.archives-ouvertes.fr/hal-00428932

.. J. Tellez, C. Huang, S. Baker, C. Mccarty, M. Green et al., Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma, Cancer Res, vol.139, issue.62, pp.65-75, 1991.

X. Yan, Y. Lin, D. Yang, Y. Shen, M. Yuan et al., A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth, Blood, vol.102, issue.1, pp.184-191, 2003.
DOI : 10.1182/blood-2002-04-1004

URL : http://www.bloodjournal.org/content/bloodjournal/102/1/184.full.pdf

M. Nollet, J. Stalin, A. Moyon, W. Traboulsi, A. Essaadi et al., A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule, Oncotarget, vol.8, issue.68
DOI : 10.18632/oncotarget.22736

URL : https://hal.archives-ouvertes.fr/hal-01766676

S. Westrøm, T. B. Bønsdorff, N. Abbas, Ø. S. Bruland, T. J. Jonasdottir et al., Evaluation of CD146 as Target for Radioimmunotherapy against Osteosarcoma, PLOS ONE, vol.18, issue.2, p.165382, 2016.
DOI : 10.1371/journal.pone.0165382.g006

O. Vainio, D. Dunon, F. Aïssi, J. P. Dangy, K. M. Mcnagny et al., HEMCAM, an adhesion molecule expressed by c-kit+ hemopoietic progenitors, The Journal of Cell Biology, vol.135, issue.6, pp.1655-1668, 1996.
DOI : 10.1083/jcb.135.6.1655

URL : http://jcb.rupress.org/content/jcb/135/6/1655.full.pdf

P. Bu, J. Zhuang, J. Feng, D. Yang, X. Shen et al., Visualization of CD146 dimerization and its regulation in living cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.4, pp.1773-513, 2007.
DOI : 10.1016/j.bbamcr.2007.01.009

Y. Yang, R. Hernandez, J. Rao, L. Yin, Y. Qu et al., Targeting CD146 with a 64Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas, Proc. Natl. Acad. Sci. U.S.A. 2015. [CrossRef]

C. Sers, K. Kirsch, U. Rothbächer, G. Riethmüller, and J. P. Johnson, Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains., Proc. Natl. Acad. Sci, pp.8514-8518, 1993.
DOI : 10.1073/pnas.90.18.8514

C. S. Mintz-weber and J. P. Johnson, Identification of the elements regulating the expression of the cell adhesion molecule MCAM/MUC18. Loss of AP-2 is not required for MCAM expression in melanoma cell lines

D. Jean, J. E. Gershenwald, S. Huang, M. Luca, M. J. Hudson et al., and an Increase in Tumor Growth and Metastasis of Human Melanoma Cells, Journal of Biological Chemistry, vol.2, issue.26, pp.16501-16508, 1998.
DOI : 10.1073/pnas.93.25.14586

S. Xie, J. E. Price, M. Luca, D. Jean, Z. Ronai et al., Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells, Oncogene, vol.15, issue.17, pp.2069-2075, 1997.
DOI : 10.1038/sj.onc.1201358

N. Kijima, N. Hosen, N. Kagawa, N. Hashimoto, A. Nakano et al., CD166/Activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion, Neuro-Oncology, vol.14, issue.6, pp.1254-1264, 2012.
DOI : 10.1158/1078-0432.CCR-07-0428

H. Yang, S. Wang, Z. Liu, M. H. Wu, B. Mcalpine et al., Isolation and characterization of mouse MUC18 cDNA gene, and correlation of MUC18 expression in mouse melanoma cell lines with metastatic ability, Gene, vol.265, issue.1-2, pp.133-145, 2001.
DOI : 10.1016/S0378-1119(01)00349-3

G. Feng, H. Huang, X. Ye, P. Zhang, J. Huang et al., CD146 Promoter Polymorphism (rs3923594) Is Associated with Recurrence of Clear Cell Renal Cell Carcinoma in Chinese Population, Disease Markers, vol.2017, 2017.
DOI : 10.1016/j.eururo.2015.04.018

M. Schön, T. Kähne, H. Gollnick, and M. P. Schön, Expression of gp130 in Tumors and Inflammatory Disorders of the Skin: Formal Proof of its Identity as CD146 (MUC18, Mel-CAM), Journal of Investigative Dermatology, vol.28, issue.Pt 1, pp.353-363, 2005.
DOI : 10.1016/j.cdp.2003.12.006

M. Ihnen, E. Kilic, N. Köhler, T. Löning, I. Witzel et al., Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin, Journal of Clinical Pathology, vol.64, issue.2, pp.146-152, 2011.
DOI : 10.1136/jcp.2010.082602

E. Taira, T. Nagino, H. Taniura, N. Takaha, C. H. Kim et al., Expression and Functional Analysis of a Novel Isoform of Gicerin, an Immunoglobulin Superfamily Cell Adhesion Molecule, Journal of Biological Chemistry, vol.270, issue.48, pp.28681-28687, 1995.
DOI : 10.1074/jbc.270.48.28681

N. Bardin, V. Moal, F. Anfosso, L. Daniel, P. Brunet et al., Soluble CD146, a novel endothelial marker, is increased in physiopathological settings linked to endothelial junctional alteration, Thrombosis and Haemostasis, vol.90, pp.915-920, 2003.
DOI : 10.1160/TH02-11-0285

E. Boneberg, H. Illges, D. F. Legler, and G. Fürstenberger, Soluble CD146 is generated by ectodomain shedding of membrane CD146 in a calcium-induced, matrix metalloprotease-dependent process, Microvascular Research, vol.78, issue.3, pp.325-331, 2009.
DOI : 10.1016/j.mvr.2009.06.012

B. Guezguez, P. Vigneron, S. Alais, T. Jaffredo, J. Gavard et al., A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells, FEBS Letters, vol.22, issue.15, pp.3649-3656, 2006.
DOI : 10.1038/sj.onc.1206819

N. Bardin, F. Anfosso, J. M. Massé, E. Cramer, F. Sabatier et al., Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion, Blood, vol.98, issue.13, pp.3677-3684, 2001.
DOI : 10.1182/blood.V98.13.3677

S. Okumura, O. Muraoka, Y. Tsukamoto, H. Tanaka, K. Kohama et al., Involvement of Gicerin in the Extension of Microvilli, Experimental Cell Research, vol.271, issue.2, pp.269-276, 2001.
DOI : 10.1006/excr.2001.5393

X. Xie, W. Wang, S. Gan, S. Chen, and Q. Zhang, al. Expression of CD146 in Adult and Children's Acute B Cell Lymphoblastic Leukemia and Its Significance, Zhongguo Shi Yan Xue Ye Xue Za Zhi 2017, pp.30-34
URL : https://hal.archives-ouvertes.fr/jpa-00254673

J. Liu, J. K. Nagpal, C. Jeronimo, J. E. Lee, R. Henrique et al., Hypermethylation of MCAM gene is associated with advanced tumor stage in prostate cancer, The Prostate, vol.34, issue.4, pp.418-426, 2008.
DOI : 10.1093/oxfordjournals.epirev.a000782

M. Luca, B. Hunt, C. D. Bucana, J. P. Johnson, I. J. Fidler et al., Direct correlation between MUC18 expression and metastatic potential of human melanoma cells, Melanoma Research, vol.3, issue.1, pp.35-41, 1993.
DOI : 10.1097/00008390-199304000-00006

H. Schlagbauer-wadl, B. Jansen, M. Müller, P. Polterauer, K. Wolff et al., Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice, International Journal of Cancer, vol.10, issue.6, pp.951-955, 1999.
DOI : 10.1007/BF00132752

S. Xie, M. Luca, S. Huang, M. Gutman, R. Reich et al., Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis, Cancer Res, vol.57, pp.2295-2303, 1997.

K. Watson-hurst and D. Becker, The role of N-Cadherin, MCAM, and ??3 integrin in melanoma progression, proliferation, migration and invasion, Cancer Biology & Therapy, vol.5, issue.10, pp.1375-1382, 2006.
DOI : 10.4161/cbt.5.10.3241

M. C. Rapanotti, L. Bianchi, I. Ricozzi, E. Campione, A. Pierantozzi et al., Melanoma-associated markers expression in blood: MUC-18 is associated with advanced stages in melanoma patients, British Journal of Dermatology, vol.13, issue.2, pp.338-344, 2009.
DOI : 10.1111/j.1365-2133.2008.08929.x

R. A. Pearl, M. D. Pacifico, P. I. Richman, G. D. Wilson, and R. Grover, Stratification of patients by melanoma cell adhesion molecule (MCAM) expression on the basis of risk: implications for sentinel lymph node biopsy, Journal of Plastic, Reconstructive & Aesthetic Surgery, vol.61, issue.3, pp.61-265, 2008.
DOI : 10.1016/j.bjps.2007.04.010

G. Wu, Q. Peng, P. Fu, S. Wang, C. Chiang et al., Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells, Gene, vol.327, issue.2, pp.201-213, 2004.
DOI : 10.1016/j.gene.2003.11.018

Z. Wu, Z. Wu, J. Li, X. Yang, Y. Wang et al., MCAM is a novel metastasis marker and regulates spreading, apoptosis and invasion of ovarian cancer cells, Tumor Biology, vol.9, issue.5, pp.1619-1628, 2012.
DOI : 10.1038/sj.cdd.4400987

L. M. Shih, M. Y. Hsu, J. P. Palazzo, and M. Herlyn, The cell-cell adhesion receptor Mel-CAM acts as a tumor suppressor in breast carcinoma, Am. J. Pathol, vol.151, pp.745-751, 1997.

G. Zabouo, A. Imbert, J. Jacquemier, P. Finetti, T. Moreau et al., Chabannon, C. CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines, R1. [CrossRef], 2009.

G. Zeng, S. Cai, Y. Liu, G. Wu, and . Metcam, METCAM/MUC18 augments migration, invasion, and tumorigenicity of human breast cancer SK-BR-3 cells, Gene, vol.492, issue.1, pp.229-238, 2012.
DOI : 10.1016/j.gene.2011.10.024

W. Liu, S. Ji, J. Sun, and Y. Zhang, CD146 Expression Correlates with Epithelial-Mesenchymal Transition Markers and a Poor Prognosis in Gastric Cancer, International Journal of Molecular Sciences, vol.43, issue.5, pp.6399-6406, 2012.
DOI : 10.1016/j.humpath.2011.07.003

Y. Liang, D. Zeng, Y. Xiao, Y. Wu, and Y. Ouyang, MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial???mesenchymal transition, decreased ER?? expression and AKT activation, Cancer Letters, vol.386, issue.386, pp.65-76
DOI : 10.1016/j.canlet.2016.11.004

Q. Zeng, W. Li, D. Lu, Z. Wu, H. Duan et al., CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer, Proc. Natl
DOI : 10.1002/pros.1111

URL : http://www.pnas.org/content/109/4/1127.full.pdf

F. I. Staquicini, A. Tandle, S. K. Libutti, J. Sun, M. Zigler et al., A Subset of Host B Lymphocytes Controls Melanoma Metastasis through a Melanoma Cell Adhesion Molecule/MUC18-Dependent Interaction: Evidence from Mice and Humans, Cancer Research, vol.68, issue.20, pp.8419-8428, 2008.
DOI : 10.1158/0008-5472.CAN-08-1242

C. Marquette, Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer, Br. J. Cancer, vol.110, pp.1236-1243, 2014.

J. Wellbrock and W. Fiedler, CD146: a new partner for VEGFR2, Blood, vol.120, issue.11, pp.2164-2165
DOI : 10.1182/blood-2012-07-439646

URL : http://www.bloodjournal.org/content/bloodjournal/120/11/2164.full.pdf

J. Stalin, K. Harhouri, L. Hubert, P. Garrigue, M. Nollet et al., Soluble CD146 boosts therapeutic effect of endothelial progenitors through proteolytic processing of short CD146 isoform, Cardiovascular Research, vol.15, issue.3, pp.240-251, 2016.
DOI : 10.1074/jbc.M407986200

URL : https://hal.archives-ouvertes.fr/hal-01456844

J. Stalin, K. Harhouri, L. Hubert, C. Subrini, D. Lafitte et al., Soluble Melanoma Cell Adhesion Molecule (sMCAM/sCD146) Promotes Angiogenic Effects on Endothelial Progenitor Cells through Angiomotin, Journal of Biological Chemistry, vol.92, issue.13, pp.8991-9000, 2013.
DOI : 10.1111/j.1538-7836.2008.03214.x

URL : http://www.jbc.org/content/288/13/8991.full.pdf

F. Colomb, W. Wang, D. Simpson, M. Zafar, R. Beynon et al., Galectin-3 interacts with the cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells, Journal of Biological Chemistry, vol.6, issue.20, pp.8381-8389, 2017.
DOI : 10.18632/oncotarget.4409

M. F. Elshal, S. S. Khan, Y. Takahashi, M. A. Solomon, and J. Mccoy, CD146 (Mel-CAM), an adhesion marker of endothelial cells, is a novel marker of lymphocyte subset activation in normal peripheral blood, Blood, vol.106, issue.8, pp.2923-2924, 2005.
DOI : 10.1182/blood-2005-06-2307

W. F. Pickl, O. Majdic, G. F. Fischer, P. Petzelbauer, I. Faé et al., an activation antigen of human T lymphocytes, MUC18/MCAM (CD146), pp.2107-2115, 1997.

N. Despoix, T. Walzer, N. Jouve, M. Blot-chabaud, N. Bardin et al., Mouse CD146/MCAM is a marker of natural killer cell maturation, European Journal of Immunology, vol.104, issue.10, pp.2855-2864, 2008.
DOI : 10.4049/jimmunol.180.6.3739

M. F. Elshal, S. S. Khan, N. Raghavachari, Y. Takahashi, J. Barb et al., A unique population of effector memory lymphocytes identified by CD146 having a distinct immunophenotypic and genomic profile, BMC Immunology, vol.8, issue.1, p.29, 2007.
DOI : 10.1186/1471-2172-8-29

A. N. Solovey, L. Gui, L. Chang, J. Enenstein, P. V. Browne et al., Identification and functional assessment of endothelial P1H12, Journal of Laboratory and Clinical Medicine, vol.138, issue.5, pp.322-331, 2001.
DOI : 10.1067/mlc.2001.118519

T. Kamiyama, H. Watanabe, M. Iijima, A. Miyazaki, and S. Iwamoto, Coexpression of CCR6 and CD146 (MCAM) is a marker of effector memory T-helper 17 cells, The Journal of Dermatology, vol.20, issue.10, pp.838-842, 2012.
DOI : 10.1111/j.1600-0625.2011.01308.x

C. Sers, G. Riethmüller, and J. P. Johnson, MUC18, a melanoma-progression associated molecule, and its potential role in tumor vascularization and hematogenous spread, Cancer Res, vol.54, pp.5689-5694, 1994.

N. Bardin, F. George, M. Mutin, C. Brisson, N. Horschowski et al., S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen, Tissue Antigens, vol.93, issue.5, pp.531-539, 1996.
DOI : 10.1042/bj2590035

N. Bardin, V. Francès, G. Lesaule, N. Horschowski, F. George et al., Identification of the S-Endo 1 Endothelial-Associated Antigen, Biochemical and Biophysical Research Communications, vol.218, issue.1, pp.210-216, 1996.
DOI : 10.1006/bbrc.1996.0037

E. C. Mcgary, A. Heimberger, L. Mills, K. Weber, G. W. Thomas et al., A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo, Clin. Cancer Res, vol.9, pp.6560-6566, 2003.

P. Bu, L. Gao, J. Zhuang, J. Feng, D. Yang et al., Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-??B activation, Molecular Cancer Therapeutics, vol.5, issue.11, pp.2872-2878, 2006.
DOI : 10.1158/1535-7163.MCT-06-0260

Y. Zhang, C. Zheng, J. Zhang, D. Yang, J. Feng et al., Generation and Characterization of a Panel of Monoclonal Antibodies Against Distinct Epitopes of Human CD146, Hybridoma, vol.27, issue.5, pp.345-352, 2008.
DOI : 10.1089/hyb.2008.0034

T. Jiang, J. Zhuang, H. Duan, Y. Luo, Q. Zeng et al., CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis, Blood, vol.120, issue.11, pp.2330-2339, 2012.
DOI : 10.1182/blood-2012-01-406108

X. Ma, J. Wang, J. Liu, Q. Mo, X. Yan et al., Targeting CD146 in combination with vorinostat for the treatment of ovarian cancer cells, Oncology Letters, vol.13, issue.3, pp.1681-1687, 2017.
DOI : 10.3892/ol.2017.5630

P. Zeng, H. Li, P. Lu, and L. Zhou, Prognostic value of CD146 in solid tumor: A Systematic Review and Meta-analysis, Scientific Reports, vol.56, issue.1
DOI : 10.1111/j.0006-341X.2000.00455.x

I. S. Alam, M. A. Arshad, Q. Nguyen, and E. Aboagye, Radiopharmaceuticals as probes to characterize tumour tissue, European Journal of Nuclear Medicine and Molecular Imaging, vol.28, issue.26, pp.537-561, 2015.
DOI : 10.1038/nm.2935

G. A. Van-dongen, G. W. Visser, M. N. Lub-de-hooge, E. G. De-vries, and L. R. Perk, Immuno-PET: A Navigator in Monoclonal Antibody Development and Applications, The Oncologist, vol.12, issue.12, pp.1379-1389, 2007.
DOI : 10.1634/theoncologist.12-12-1379

F. Kraeber-bodere, C. Bailly, M. Chérel, and J. Chatal, ImmunoPET to help stratify patients for targeted therapies and to improve drug development, European Journal of Nuclear Medicine and Molecular Imaging, vol.42, issue.12, pp.2166-2168, 2016.
DOI : 10.1007/s00259-015-3025-6

URL : https://link.springer.com/content/pdf/10.1007%2Fs00259-016-3458-6.pdf

A. Rahmim and H. Zaidi, PET versus SPECT: strengths, limitations and challenges, Nuclear Medicine Communications, vol.29, issue.3, pp.193-207, 2008.
DOI : 10.1097/MNM.0b013e3282f3a515

W. Cai, CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody, Theranostics, vol.2016, issue.6, 1918.

R. Hernandez, H. Sun, C. G. England, H. F. Valdovinos, T. E. Barnhart et al., ImmunoPET Imaging of CD146 Expression in Malignant Brain Tumors, Molecular Pharmaceutics, vol.13, issue.7, pp.2563-2570, 2016.
DOI : 10.1021/acs.molpharmaceut.6b00372

H. Sun, C. G. England, R. Hernandez, S. A. Graves, R. L. Majewski et al., ImmunoPET for assessing the differential uptake of a CD146-specific monoclonal antibody in lung cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.18, issue.12, pp.2169-2179, 2016.
DOI : 10.1093/intimm/dxl110