J. Moscoso, H. Mikkelsen, S. Heeb, P. Williams, and A. Filloux, The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environmental microbiology, pp.3128-3138, 2011.

M. Lam, Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa, Journal of clinical microbiology, vol.27, pp.962-967, 1989.

N. Microbiol, Author manuscript; available in PMC, 2017.

P. Europe, . Funders-author-manuscripts-3, S. Islam, and J. Lam, Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway, Canadian journal of microbiology, vol.60, pp.697-716, 2014.

D. Bellini, Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre, Molecular Microbiology, vol.378, issue.1, pp.26-38, 2014.
DOI : 10.1016/j.jmb.2008.02.036

R. Ryan, Cyclic di-GMP signalling and the regulation of bacterial virulence, Microbiology, vol.101, issue.17, pp.1286-1297, 2013.
DOI : 10.1073/pnas.0307553101

A. Sundriyal, Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP. The Journal of biological chemistry, pp.6978-6990, 2014.

U. Romling, M. Galperin, and M. Gomelsky, Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiology and molecular biology reviews : MMBR, pp.1-5200043, 2013.

H. Mulcahy, Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation, Infection and Immunity, vol.76, issue.2, pp.632-638, 2008.
DOI : 10.1128/IAI.01132-07

URL : http://iai.asm.org/content/76/2/632.full.pdf

J. Moscoso, The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa, Journal of Bacteriology, vol.196, issue.23, pp.4081-408801850, 2014.
DOI : 10.1128/JB.01850-14

L. Houot, F. A. De-bentzmann, S. Bordi, and C. , A bacterial two-hybrid genome fragment library for deciphering regulatory networks of the opportunistic pathogen Pseudomonas aeruginosa, Microbiology, vol.103, issue.1, pp.1964-1971, 2012.
DOI : 10.1073/pnas.0507407103

URL : https://hal.archives-ouvertes.fr/hal-01458241

Y. Wu, Q. Li, and X. Chen, Detecting protein???protein interactions by far western blotting, Nature Protocols, vol.15, issue.12, pp.3278-3284459, 2007.
DOI : 10.1038/nprot.2007.459

L. Kelley, S. Mezulis, C. Yates, M. Wass, and M. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.1, issue.6, pp.845-858, 2015.
DOI : 10.1093/bioinformatics/btl677

G. Hagelueken, O9a, Molecular Microbiology, vol.63, issue.3, pp.730-742, 2012.
DOI : 10.1111/j.1365-2958.2007.05611.x

S. Yokota, S. Kaya, T. Kawamura, Y. Araki, and E. Ito, The Structure of the O-Specific Chain of Lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584)1, The Journal of Biochemistry, vol.99, issue.6, pp.1551-1561, 1986.
DOI : 10.1093/oxfordjournals.jbchem.a135628

T. Arsenault, strain PAO1, Canadian Journal of Chemistry, vol.69, issue.8, pp.1273-1280, 1991.
DOI : 10.1139/v91-190

Y. Hao, J. King, S. Huszczynski, D. Kocincova, and J. Lam, Five New Genes Are Important for Common Polysaccharide Antigen Biosynthesis in Pseudomonas aeruginosa, mBio, vol.4, issue.1, pp.631-00612, 2013.
DOI : 10.1128/mBio.00631-12

B. Clarke, L. Greenfield, C. Bouwman, and C. Whitfield, Coordination of Polymerization, Chain Termination, and Export in Assembly of the Escherichia coli Lipopolysaccharide O9a Antigen in an ATP-binding Cassette Transporter-dependent Pathway, Journal of Biological Chemistry, vol.177, issue.44, pp.30662-30672, 2009.
DOI : 10.1128/jb.177.14.4121-4130.1995

B. Clarke, L. Cuthbertson, and C. Whitfield, and Couple Chain Termination to Polymer Export via an ATP-binding Cassette Transporter, Journal of Biological Chemistry, vol.261, issue.34, pp.35709-35718, 2004.
DOI : 10.1099/00221287-135-10-2589

M. Belanger, L. Burrows, and J. Lam, Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide, Microbiology, vol.23, issue.12, pp.3505-3521, 1999.
DOI : 10.1046/j.1365-2958.1997.1871558.x

H. Rocchetta, L. Burrows, and J. Lam, Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiology and molecular biology reviews : MMBR, pp.523-553, 1999.

N. Microbiol, Author manuscript; available in PMC, 2017.

M. Homonylo, S. Wilmot, J. Lam, L. Macdonald, and C. Whitfield, (09: K30(A): H12): characterisation and use in analysis of K antigen organisation on the cell surface, Europe PMC Funders Author Manuscripts 21, pp.1159-1165, 1988.
DOI : 10.1139/m88-204

G. Hagelueken, A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide, Nature Structural & Molecular Biology, vol.154, issue.1, pp.50-56, 2015.
DOI : 10.1016/0003-2697(82)90673-X

S. Liston, O9a Antigen, Journal of Biological Chemistry, vol.154, issue.2, pp.1075-1085, 2015.
DOI : 10.1073/pnas.95.10.5752

Y. Hao, K. Murphy, R. Lo, C. Khursigara, and J. Lam, ABSTRACT, Journal of Bacteriology, vol.197, issue.17, pp.2780-2791, 2015.
DOI : 10.1128/JB.00337-15

S. Wang, ABSTRACT, Journal of Bacteriology, vol.197, issue.12, pp.2012-2019, 2015.
DOI : 10.1128/JB.02590-14

URL : https://hal.archives-ouvertes.fr/hal-01351397

K. Roelofs, J. Wang, H. Sintim, and V. Lee, Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions, Proceedings of the National Academy of Sciences, vol.340, issue.6230, pp.15528-15533, 2011.
DOI : 10.1038/340245a0

E. Trampari, Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP. The Journal of biological chemistry, pp.24470-24483, 2015.

B. Christen, Allosteric Control of Cyclic di-GMP Signaling, Journal of Biological Chemistry, vol.204, issue.42, pp.32015-32024, 2006.
DOI : 10.1016/S0022-2836(02)00994-4

G. Pier, Pseudomonas aeruginosa lipopolysaccharide: A major virulence factor, initiator of inflammation and target for effective immunity, International Journal of Medical Microbiology, vol.297, issue.5, pp.277-295, 2007.
DOI : 10.1016/j.ijmm.2007.03.012

S. Cryz, . Jr, T. Pitt, E. Furer, and R. Germanier, Role of lipopolysaccharide in virulence of Pseudomonas aeruginosa, Infection and immunity, vol.44, pp.508-513, 1984.

J. Goldberg, M. Coyne, . Jr, A. Neely, and I. Holder, Avirulence of a Pseudomonas aeruginosa algC mutant in a burned-mouse model of infection, Infection and immunity, vol.63, pp.4166-4169, 1995.

G. Priebe, The galU Gene of Pseudomonas aeruginosa Is Required for Corneal Infection and Efficient Systemic Spread following Pneumonia but Not for Infection Confined to the Lung, Infection and Immunity, vol.72, issue.7, pp.4224-4232, 2004.
DOI : 10.1128/IAI.72.7.4224-4232.2004

E. Peterman, Neutralization of Mitochondrial Superoxide by Superoxide Dismutase 2 Promotes Bacterial Clearance and Regulates Phagocyte Numbers in Zebrafish, DOI: 10.1128/IAI, pp.430-44002245, 2015.
DOI : 10.1016/j.mad.2004.01.009

S. Joyce and C. Gahan, Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella, Microbiology, vol.9, issue.8, pp.3456-3468, 2010.
DOI : 10.1038/ni.1634

A. Clatworthy, Pseudomonas aeruginosa Infection of Zebrafish Involves both Host and Pathogen Determinants, Infection and Immunity, vol.77, issue.4, pp.1293-1303, 2009.
DOI : 10.1128/IAI.01181-08

C. Hall, M. Flores, T. Storm, K. Crosier, and P. Crosier, The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish, BMC Developmental Biology, vol.7, issue.1, pp.42-52, 2007.
DOI : 10.1186/1471-213X-7-42

N. Microbiol, Author manuscript; available in PMC, 2017.

D. Amikam and M. Benziman, Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens., Europe PMC Funders Author Manuscripts 38, pp.6649-6655, 1989.
DOI : 10.1128/jb.171.12.6649-6655.1989

URL : http://jb.asm.org/content/171/12/6649.full.pdf

R. Mayer, Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants., Proceedings of the National Academy of Sciences, vol.88, issue.12, pp.5472-5476, 1991.
DOI : 10.1073/pnas.88.12.5472

D. Amikam and M. Galperin, PilZ domain is part of the bacterial c-di-GMP binding protein, Bioinformatics, vol.416, issue.2, pp.3-6, 2006.
DOI : 10.1016/S0014-5793(97)01202-7

K. Roelofs, Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems, PLOS Pathogens, vol.191, issue.21, 2015.
DOI : 10.1371/journal.ppat.1005232.s010

R. Corrigan, J. Abbott, H. Burhenne, V. Kaever, and A. Grundling, c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress, PLoS Pathogens, vol.263, issue.9, 2011.
DOI : 10.1371/journal.ppat.1002217.s001

R. Corrigan, Systematic identification of conserved bacterial c-di-AMP receptor proteins, Proceedings of the National Academy of Sciences, vol.106, issue.5, pp.9084-90891300595110, 2013.
DOI : 10.1073/pnas.0809020106

C. Lori, Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication, Nature, vol.234, issue.7559, pp.236-239, 2015.
DOI : 10.1006/jmbi.1993.1626

B. Ojeniyi, J. Lam, N. Hoiby, and V. Rosdahl, A comparison of the efficiency in serotyping of Pseudomonas aeruginosa from cystic fibrosis patients using monoclonal and polyclonal antibodies, APMIS, vol.26, issue.7-12
DOI : 10.1164/arrd.1983.127.5.605

G. Sezonov, D. Joseleau-petit, D. 'ari, and R. , Escherichia coli Physiology in Luria-Bertani Broth, Journal of Bacteriology, vol.189, issue.23, pp.8746-874901368, 2007.
DOI : 10.1128/JB.01368-07

URL : https://hal.archives-ouvertes.fr/hal-00184125

J. Miller, Experiments in molecular genetics, 1972.

J. Sambrook, E. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

G. Pessi and D. Haas, Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR in Pseudomonas aeruginosa, Journal of Bacteriology, vol.182, issue.24, pp.6940-6949, 2000.
DOI : 10.1128/JB.182.24.6940-6949.2000

C. Bordi, Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis, Molecular Microbiology, vol.48, issue.6, pp.1427-1443, 2010.
DOI : 10.1016/S1438-4221(00)80060-0

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proceedings of the National Academy of Sciences, vol.16, issue.3, pp.5752-5756, 1998.
DOI : 10.1038/ng0797-277

A. Fomsgaard, M. Freudenberg, and C. Galanos, Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels, Journal of clinical microbiology, vol.28, pp.2627-2631, 1990.

T. De-kievit, T. Dasgupta, H. Schweizer, and J. Lam, Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype O5) Molecular microbiology, pp.565-574, 1995.

M. Blake, K. Johnston, R. , G. Gotschlich, and E. , A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots, Analytical Biochemistry, vol.136, issue.1, pp.175-179, 1984.
DOI : 10.1016/0003-2697(84)90320-8

C. Harding, G. Schroeder, J. Collins, and G. Frankel, Use of Galleria mellonella as a model organism to study Legionella pneumophila infection, Journal of visualized experiments: JoVE, pp.50964-50974, 2013.

M. Westerfield, The zebrafish book. A guide for the laboratory use of zebrafish (Brachydanio rerio) University of Oregon Press, 1993.

A. Rocker, A. Weiss, J. Lam, T. Van-raay, and C. Khursigara, Visualizing and quantifying Pseudomonas aeruginosa infection in the hindbrain ventricle of zebrafish using confocal laser scanning microscopy, Journal of Microbiological Methods, vol.117, pp.85-94, 2015.
DOI : 10.1016/j.mimet.2015.07.013

N. Microbiol, Author manuscript; available in PMC, 2017.

S. Mostowy, The Zebrafish as a New Model for the In Vivo Study of Shigella flexneri Interaction with Phagocytes and Bacterial Autophagy, Europe PMC Funders Author Manuscripts 58, 2013.
DOI : 10.1371/journal.ppat.1003588.s016

M. Moya, M. Colluci-guyon, E. Mostowy, and S. , Use of Shigella flexneri to study autophagycytoskeleton interactions, Journal of visualized experiments : JoVE, vol.91, p.51601, 2014.

O. Stockhammer, A. Zakrzewska, Z. Hegedus, H. Spaink, and A. Meijer, Transcriptome Profiling and Functional Analyses of the Zebrafish Embryonic Innate Immune Response to Salmonella Infection, The Journal of Immunology, vol.182, issue.9, pp.5641-5653, 1950.
DOI : 10.4049/jimmunol.0900082

N. Microbiol, Author manuscript; available in PMC, 2017.