J. Massoulié, L. Pezzementi, S. Bon, E. Krejci, and F. Vallette, Molecular and cellular biology of cholinesterases, Progress in Neurobiology, vol.41, issue.1, pp.31-9190040, 1993.
DOI : 10.1016/0301-0082(93)90040-Y

P. Taylor and Z. Radi?, The Cholinesterases: From Genes to Proteins, Annual Review of Pharmacology and Toxicology, vol.34, issue.1, 1994.
DOI : 10.1146/annurev.pa.34.040194.001433

I. Silman and J. Sussman, Acetylcholinesterase: How is structure related to function?, Chemico-Biological Interactions, vol.175, issue.1-3, 2008.
DOI : 10.1016/j.cbi.2008.05.035

J. Sussman, M. Harel, F. Frolow, C. Oefner, and A. Goldman, Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein, Science, vol.343, issue.6260, p.1678899, 1991.
DOI : 10.1038/343771a0

P. Taylor and S. Lappi, Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding, Biochemistry, vol.14, issue.9, 1975.
DOI : 10.1021/bi00680a029

Z. Radi?, N. Pickering, D. Vellom, S. Camp, and P. Taylor, Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors, Biochemistry, vol.32, issue.45, pp.12074-12084, 1993.
DOI : 10.1021/bi00096a018

Y. Bourne, Z. Radic, G. Sulzenbacher, E. Kim, and P. Taylor, Substrate and Product Trafficking through the Active Center Gorge of Acetylcholinesterase Analyzed by Crystallography and Equilibrium Binding, Journal of Biological Chemistry, vol.157, issue.158, pp.29256-29267, 2006.
DOI : 10.1038/sj.emboj.7601175

URL : https://hal.archives-ouvertes.fr/hal-00134313

J. Colletier, D. Fournier, H. Greenblatt, J. Stojan, and J. Sussman, Structural insights into substrate traffic and inhibition in acetylcholinesterase, The EMBO Journal, vol.172, issue.12, pp.2746-2756, 2006.
DOI : 10.1016/0006-3002(51)90066-2

URL : https://hal.archives-ouvertes.fr/hal-00120647

Z. Radi?, E. Reiner, and P. Taylor, Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives, Mol Pharmacol, vol.39, pp.98-104, 1991.

J. Johnson, B. Cusack, T. Hughes, E. Mccullough, and A. Fauq, Inhibitors Tethered Near the Acetylcholinesterase Active Site Serve as Molecular Rulers of the Peripheral and Acylation Sites, Journal of Biological Chemistry, vol.13, issue.40, pp.38948-38955, 2003.
DOI : 10.1016/B978-0-12-185275-7.50007-X

Y. Bourne, P. Taylor, and P. Marchot, Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex, Cell, vol.83, issue.3, pp.503-51290128, 1995.
DOI : 10.1016/0092-8674(95)90128-0

Z. Radi?, D. Quinn, D. Vellom, S. Camp, and P. Taylor, Allosteric Control of Acetylcholinesterase Catalysis by Fasciculin, Journal of Biological Chemistry, vol.3, issue.35, pp.20391-20399, 1995.
DOI : 10.1016/0167-4838(94)90195-3

Y. Bourne, P. Taylor, Z. Radi?, and P. Marchot, Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site, The EMBO Journal, vol.22, issue.1, 2003.
DOI : 10.1093/emboj/cdg005

Y. Bourne, H. Kolb, Z. Radi?, K. Sharpless, and P. Taylor, Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation, Proceedings of the National Academy of Sciences, vol.175, issue.3, 2004.
DOI : 10.1007/3-540-58800-0_16

J. Colletier, B. Sanson, F. Nachon, E. Gabellieri, and C. Fattorusso, Acetylcholinesterase Revealed by the Complex Structure with a Bifunctional Inhibitor, Journal of the American Chemical Society, vol.128, issue.14, pp.4526-4527, 2006.
DOI : 10.1021/ja058683b

J. Changeux, Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs, Mol Pharmacol, vol.2, pp.369-392, 1966.

L. Austin and W. Berry, Two selective inhibitors of cholinesterase, Biochemical Journal, vol.54, issue.4, pp.695-700, 1953.
DOI : 10.1042/bj0540695

M. Harel, I. Schalk, L. Ehret-sabatier, F. Bouet, and M. Goeldner, Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase., Proceedings of the National Academy of Sciences, vol.90, issue.19, p.8415649, 1993.
DOI : 10.1073/pnas.90.19.9031

URL : https://hal.archives-ouvertes.fr/hal-00174859

C. Felder, M. Harel, I. Silman, and J. Sussman, acetylcholinesterase, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.10, pp.1765-1771, 2002.
DOI : 10.1107/S0907444902011642

E. Karlsson, P. Mbugua, and D. Rodriguez-ithurralde, Fasciculins, anticholinesterase toxins from the venom of the green mamba Dendroaspis angusticeps, J Physiol Paris, vol.79, pp.232-240, 1984.

P. Marchot, A. Khélif, Y. Ji, P. Mansuelle, and P. Bougis, Binding of 125I-fasciculin to rat brain acetylcholinesterase. The complex still binds diisopropyl fluorophosphate, J Biol Chem, vol.268, pp.12458-12467, 1993.

Z. Radi?, R. Duran, D. Vellom, Y. Li, C. Cervenansky et al., Site of fasciculin interaction with acetylcholinesterase, J Biol Chem, vol.269, pp.11233-11239, 1994.

J. Eastman, E. Wilson, C. Cerveñansky, and T. Rosenberry, Fasciculin 2 binds to the peripheral site on acetylcholinesterase and inhibits substrate hydrolysis by slowing a step involving proton transfer during enzyme acylation, J Biol Chem, vol.270, p.7649979, 1995.

M. Harel, G. Kleywegt, R. Ravelli, I. Silman, and J. Sussman, Crystal structure of an acetylcholinesterase???fasciculin complex: interaction of a three-fingered toxin from snake venom with its target, Structure, vol.3, issue.12, pp.1355-136610, 1995.
DOI : 10.1016/S0969-2126(01)00273-8

D. Ripoll, C. Faerman, P. Axelsen, I. Silman, and J. Sussman, An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase., Proceedings of the National Academy of Sciences, vol.90, issue.11, p.8506359, 1993.
DOI : 10.1073/pnas.90.11.5128

M. Gilson, T. Straatsma, J. Mccammon, D. Ripoll, and C. Faerman, Open "back door" in a molecular dynamics simulation of acetylcholinesterase, Science, vol.263, issue.5151, p.8122110, 1994.
DOI : 10.1126/science.8122110

Y. Xu, J. Colletier, M. Weik, G. Qin, and H. Jiang, Long Route or Shortcut? A Molecular Dynamics Study of Traffic of Thiocholine within the Active-Site Gorge of Acetylcholinesterase, Biophysical Journal, vol.99, issue.12, pp.4003-4011, 2010.
DOI : 10.1016/j.bpj.2010.10.047

F. Nachon, J. Stojan, and D. Fournier, Insights into substrate and product traffic in the Drosophila???melanogaster acetylcholinesterase active site gorge by enlarging a back channel, FEBS Journal, vol.7, issue.120, pp.2659-2664, 2008.
DOI : 10.1016/0006-2952(61)90145-9

B. Sanson, J. Colletier, Y. Xu, P. Lang, and H. Jiang, Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations, Protein Science, vol.83, issue.7, pp.1114-1118, 2011.
DOI : 10.1016/0092-8674(95)90128-0

Y. Frobert, C. Créminon, X. Cousin, M. Rémy, and J. Chatel, Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1339, issue.2, pp.253-26710, 1997.
DOI : 10.1016/S0167-4838(97)00009-5

T. Chardès, S. Villard, G. Ferrières, M. Piechaczyk, and M. Cerutti, Efficient amplification and direct sequencing of mouse variable regions from any immunoglobulin gene family, FEBS Letters, vol.176, issue.3, pp.386-394, 1999.
DOI : 10.1084/jem.176.3.761

S. Essono, Y. Frobert, J. Grassi, C. Créminon, and D. Boquet, A general method allowing the design of oligonucleotide primers to amplify the variable regions from immunoglobulin cDNA, Journal of Immunological Methods, vol.279, issue.1-2, pp.251-26610, 2003.
DOI : 10.1016/S0022-1759(03)00242-4

X. Brochet, M. Lefranc, and V. Giudicelli, IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis, Nucleic Acids Research, vol.22, issue.1, 2008.
DOI : 10.1038/sj.leu.2404969

URL : https://hal.archives-ouvertes.fr/hal-00322389

V. Giudicelli, X. Brochet, and M. Lefranc, IMGT/V-QUEST: IMGT Standardized Analysis of the Immunoglobulin (IG) and T Cell Receptor (TR) Nucleotide Sequences, Cold Spring Harbor Protocols, vol.2011, issue.6, pp.695-715, 2011.
DOI : 10.1101/pdb.prot5633

URL : https://hal.archives-ouvertes.fr/hal-00616475

J. Navaza, : an automated package for molecular replacement, Acta Crystallographica Section A Foundations of Crystallography, vol.50, issue.2, pp.157-16310, 1994.
DOI : 10.1107/S0108767393007597

A. Perrakis, R. Morris, and V. Lamzin, Automated protein model building combined with iterative structure refinement, Nature Structural Biology, vol.6, issue.5, pp.458-463, 1999.
DOI : 10.1038/8263

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

G. Murshudov, A. Vagin, and E. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

C. Chothia, A. Lesk, A. Tramontano, M. Levitt, and S. Smith-gill, Conformations of immunoglobulin hypervariable regions, Nature, vol.342, issue.6252, 1989.
DOI : 10.1038/342877a0

A. Martin, Accessing the Kabat antibody sequence database by computer, Proteins: Structure, Function, and Genetics, vol.25, issue.1, pp.130-133, 1996.
DOI : 10.1002/(SICI)1097-0134(199605)25:1<130::AID-PROT11>3.3.CO;2-Y

I. Davis, A. Leaver-fay, V. Chen, J. Block, and G. Kapral, MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Research, vol.35, issue.Web Server, pp.375-383, 2007.
DOI : 10.1093/nar/gkm216

A. Sali, L. Potterton, F. Yuan, H. Van-vlijmen, and M. Karplus, Evaluation of comparative protein modeling by MODELLER, Proteins: Structure, Function, and Genetics, vol.270, issue.3, pp.318-326, 1995.
DOI : 10.1002/prot.340230306

J. Söding, A. Biegert, and A. Lupas, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Research, vol.33, issue.Web Server, 2005.
DOI : 10.1093/nar/gki408

C. Dominguez, R. Boelens, and A. Bonvin, HADDOCK:?? A Protein???Protein Docking Approach Based on Biochemical or Biophysical Information, Journal of the American Chemical Society, vol.125, issue.7, pp.1731-1737, 2003.
DOI : 10.1021/ja026939x

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.377, issue.6547, 2001.
DOI : 10.1038/377309a0

S. Birtalan, Y. Zhang, F. Fellouse, L. Shao, and G. Schaefer, The Intrinsic Contributions of Tyrosine, Serine, Glycine and Arginine to the Affinity and Specificity of Antibodies, Journal of Molecular Biology, vol.377, issue.5, 2008.
DOI : 10.1016/j.jmb.2008.01.093

L. Minoux, D. Mahendra, A. Kaveri, S. Limnios, N. Friboulet et al., A novel molecular analysis of genes encoding catalytic antibodies, Molecular Immunology, vol.50, issue.3, pp.160-168, 2012.
DOI : 10.1016/j.molimm.2012.01.004

URL : https://hal.archives-ouvertes.fr/hal-00737752

Y. Bourne, J. Grassi, P. Bougis, and P. Marchot, Conformational Flexibility of the Acetylcholinesterase Tetramer Suggested by X-ray Crystallography, Journal of Biological Chemistry, vol.2, issue.43, pp.30370-30376, 1999.
DOI : 10.1002/pro.5560020309

T. Chitlaru, C. Kronman, M. Zeevi, M. Kam, and A. Harel, Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels, Biochemical Journal, vol.336, issue.3, pp.647-658, 1998.
DOI : 10.1042/bj3360647

O. Lockridge, C. Bartels, T. Vaughan, C. Wong, and S. Norton, Complete amino acid sequence of human serum cholinesterase, J Biol Chem, vol.262, pp.549-557, 1987.

X. Brazzolotto, M. Wandhammer, C. Ronco, M. Trovaslet, and L. Jean, Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure, FEBS Journal, vol.66, issue.158, pp.2905-2916, 2012.
DOI : 10.1107/S0907444910007493

URL : https://hal.archives-ouvertes.fr/hal-00996490

R. Jackson, Comparison of protein-protein interactions in serine protease-inhibitor and antibody-antigen complexes: Implications for the protein docking problem, Protein Science, vol.3, issue.3, pp.603-613, 1999.
DOI : 10.1080/07391102.1991.10507882

L. Lo-conte, C. Chothia, and J. Janin, The atomic structure of protein-protein recognition sites 1 1Edited by A. R. Fersht, Journal of Molecular Biology, vol.285, issue.5, pp.2177-2198, 1999.
DOI : 10.1006/jmbi.1998.2439

I. Mian, A. Bradwell, and A. Olson, Structure, function and properties of antibody binding sites, Journal of Molecular Biology, vol.217, issue.1, pp.133-1510022, 1991.
DOI : 10.1016/0022-2836(91)90617-F

G. Kryger, I. Silman, J. Sussman, Z. Radi?, P. Marchot et al., Structure of acetylcholinesterase complexed with E2020 (Aricept??): implications for the design of new anti-Alzheimer drugs, Structure, vol.7, issue.3, pp.297-307, 1995.
DOI : 10.1016/S0969-2126(99)80040-9

C. Felder, S. Botti, S. Lifson, I. Silman, and J. Sussman, External and internal electrostatic potentials of cholinesterase models, Journal of Molecular Graphics and Modelling, vol.15, issue.5, pp.318-32710, 1997.
DOI : 10.1016/S1093-3263(98)00005-9

S. Botti, C. Felder, J. Sussman, and I. Silman, Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs, Protein Engineering Design and Selection, vol.11, issue.6, pp.415-420, 1998.
DOI : 10.1093/protein/11.6.415

P. Taylor, Development of acetylcholinesterase inhibitors in the therapy of Alzheimer's disease, Neurology, vol.51, issue.Issue 1, Supplement 1, pp.30-67, 1998.
DOI : 10.1212/WNL.51.1_Suppl_1.S30