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Plant and Fungal Diversity in Gut Microbiota as Revealed
by Molecular and Culture Investigations
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Abstract

Background: Few studies describing eukaryotic communities in the human gut microbiota have been published. The
objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota
of an obese patient.

Methodology/Principal Findings: A stool specimen was collected from a 27-year-old Caucasian woman with a body mass
index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method
incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA,
internal transcribed spacer (ITS) and a chloroplast gene. The PCR products amplified using these primers were cloned and
sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS
sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp.) species, 18 plant species
from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla.
Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also
identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8
fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola,
Penicillium camemberti, Climacocystis sp. and Malassezia restricta). Many fungal species apparently originated from food, as
did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda)
are used as medicinal plants.

Conclusions/Significance: Investigating the eukaryotic components of gut microbiota may help us to understand their role
in human health.
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Introduction

The human gut contains a wide variety of microorganisms

known as the microbiota [1]. At birth, the human gut is sterile and

is then colonized by bacteria originating from the mother,

environment and diet [2,3]. Several studies have revealed the

importance of gut microbiota in host health and the contribution

of these microbes to diverse functions, including metabolism,

immune function and gene expression [4]. Gut microbes produce

a large arsenal of enzymes that are naturally absent from humans,

which contribute to food digestion, energy harvesting and storage

[5,6]. Two bacterial phyla, Firmicutes and Bacteroidetes, dominate in

the gut microbiota. Some studies have shown a reduction in the

relative proportion of Bacteroidetes in obese individuals compared to

lean individuals [5,7]. Additionally, it has been observed that the

microbiota of obese individuals extract more energy from the diet

than the microbiota of lean individuals [1].

The gut microbiota is comprised of Viruses, Bacteria, Archaea

and Eukaryotes [8]. Accordingly, there are much data available

about the bacterial community. However, few studies have

investigated eukaryotic communities in the human gut, resulting

in a dearth of information about these communities. Previous

studies that have used molecular methods to explore the

eukaryotic community in the guts of healthy individuals detected

only Galactomyces and Candida fungi and Blastocystis hominis as

prevalent species [9,10]. Additional studies have reported in-

creased fungal diversity in ill patients compared to healthy

individuals [11–13].

Thus, our study aimed to examine the repertoire of plants and

fungi in the gut of an obese human using both PCR-sequencing

and culturing techniques.

Results

Molecular Detection
Mixing Acanthamoeba castellanii DNA and stool DNA yielded

a positive amplification using specific primer pair for Acanthamoeaba

(JPD1/JDP2). Among the 25 primers pairs, 17 yielded an exact

sequence with an appropriate positive control, whereas no positive

control was available for 8 primer pairs (Table 1 & Table 2). Only

5 of these 25 eukaryotic PCRs yielded amplification product with

the stool specimen, while the negative controls exhibited no

amplification. The analysis of a total of 408 clones identified 7
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fungal species, 18 plant species and one Diatoms (Blastocystis sp.)

species (Table 3). GenBank reference number of the best hit

similarly to our sequences for each organism were: Galactomyces

geotrichum (JN903644.1); Penicillium camemberti (GQ458039.1), Ma-

lassezia globosa (AY743604.1), Malassezia pachydermatis(AB118940.1),

Malassezia restricta (AY743607.1), uncultured Chytridiomycota

(GQ995333.1) Candida tropicalis (DQ515959.1).

Fungi Isolated Using Culture Media
In all experiments, the negative control plates remained sterile.

A total 16 different fungal species were isolated (Table 4). Nine

species of fungi (M. globosa, M. restricta, M. pachydermatis, Penicillium

allii, Penicillium dipodomyicola, G. geotrichum, Cladosporidium sp.,

Climacocystis sp. and C. tropicalis) were cultured on Dixon agar

medium. Three species of fungi (Penicillium sp./P. commune/P.

camemberti, Aspergillus versicolor, Beauveria bassiana) were cultured on

Potato Dextrose media. Two species of fungi (Aspergillus flavipes,

Isaria farinosa) were cultured on CZAPEK medium. Two species

(Hypocrea lixii/Penicillium chrysogenum, Penicillium brevicompactum) were

cultured on both PDA and CZAPEK media, and C. tropicalis was

cultured on both Dixon agar and PDA media. Five of the cultured

species of fungi (G. geotrichum, C. tropicalis, M. pachydermatis, M.

globosa, and M. restricta) were also identified by clone sequencing,

while 11 fungi were detected only by culture (Figure 1). Penicillium,

Aspergillus, Galactomyces, Beauveria, Candida, Cladosporidium, and Isaria

are members of the Ascomycota phylum and Malassezia and

Climacocystis are members of the Basidiomycota phylum.

Discussion

The PCR-based and culture-based results obtained here are

validated by the fact that all the negative controls remained

negative, precluding the possibility of cross contamination from

the laboratory. Also, we ensured the absence of potential PCR

inhibitors in the stool specimen. At last, the PCR systems yielded

expected result with appropriate positive controls including Fungi

which have been shown to be diffult to lyse [14]. Accordingly, we

combined mechanical and enzymatic lysis to optimize recovery of

DNA from Fungi as previously reported [9,14–15]. These data

allowed to interpret negative results as true negatives. The 18S

rRNA, ITS and chloroplast genes amplified in this study are

molecular markers commonly used for eukaryotic screening

[11,16–22]. These genes are conserved in all eukaryotes and

contain variable regions suitable for primer design.

However, this is the first study to use a multiple set of primers

for molecular approach to screen eukaryotic communities in a stool

sample from an obese person. The combination of culture-

dependent and culture-independent cloning and sequencing

revealed a previously unsuspected diversity of eukaryotes among

the human intestinal microbiota. Indeed, we detected a total of 37

eukaryotic species; only 16 of these species had been previously

Table 1. Eukaryotic and fungi primers selected in this study.

Taxon Primer Target
PCR product
size (bp)

Annealing temperature
and number of cycles Reference

Amoeba AmiF1/Ami9R 18S rRNA 670 55uC 30 s 40cyles [47]

Acanthamoeba JDP1/JDP2 18S rRNA 460–470 60uC 60 s 40cylces [48]

Entamoeba JVF/DSPR2 18S rRNA 662–667 55uC 60 s 40cycles [49]

Hartmanella HV1227F/HV1728R 18S rRNA 502 56uC 30 s 40cycles [50]

Naegleria F/R ITS 376–388 55uC 30 s 35cycles [51]

Ciliophora 121F/1147R 18S 750–1000 55uC 60 s 30cycles [52]

Chlorophyta UCP1F/UCP1R Rsp11-rpl2 384 54uC 60 s 35cyles [53]

UCP2F/UCP2R Rsp11-rpl2 391 56uC 60 S 35cycles

Diatoms 18S/28R 18s-28srRNA 700–900 60uC 30 s 35cycles [54]

Dinoflagellate 18ScomF1/Dino18SR1 18S rRNA 650 58uC 60 s 40cycles [55]

Diplomonads DimA/DimB 18S rRNA [56]

Euglenophyta EAF/EAF3 18S rRNA 1000 62uC 90 s 25cycles [57]

Kinetoplastidia Kinetokin1/kinetokin2 18S rRNA 600–650 56uC 60 s 35cycles [58]

KinSSUF1/KinSSUR1 18S rRNA 427–600 60uC 60 s 35cycles [59]

Microsporidia V1/PMP2 18S rRNA 250–279 55uC 30 s 35cycles [60]

Rodhophyta URP1_F/URP1_R rps10-dnaK 464 52uC 60 s 35cyles [53]

URP2_F/URP2_R rps10-dnaK 1772 52uC 60 s 35cyles

Trichomonads TFR1/TFR2 5,8SrNRA, ITS 338–391 60uC 30 s 35cycles [61]

Fungi MalF/MALR 26S 580 55uC 45 s 40cycles [62]

Fungi NS1/FR1 18S rRNA 1650 48uC 45 s 35cycles [63]

ITS1F/ITS4R ITS Variable 50uC45 s 40cycles [9]

Fungi FunF/funR 18S 1000 52uC30 s 40cycles [12]

Universal Euk1A/EUK516r 18S 560 50uC 30 s 35cycles [9]

eukaryote EUK528/1391R 18S 1000–1300 55uC 60 s 30cylces [64]

Plant rbcLZ1/rbcL19b Chloroplast 157 40uC30 s 40 cycles [16]

doi:10.1371/journal.pone.0059474.t001
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reported to be present in the gut microbiota. Interestingly, the

culturing of the sample in using only three different culture media

identified more than twice the fungal species than did the different

PCR-based molecular methods (Table 5). Accordingly, culturing

yielded A. flavipes, P. brevicompactum, B. bassiana, P. dipodomyicola, M.

restricta, Climacocystis sp. and I. farisona, which have not been

previously detected in human stool samples. This result differs

from previous studies that cultured only one or two Candida spp.

and Saccharomyces spp. from healthy individuals [9–12]. Our culture

conditions were different from those used by Scanlan and Chen

[9,12], as we incubated our cultures at 25uC for two weeks. We

also did not use the same medium as Khatib [23]. Our use of

Dixon medium allowed us to isolate a wide variety of fungi (9

species). Our results can be explained by our subject’s obese status;

it is possible that obese individuals harbor more fungi. Most of the

fungi (11 species) identified in our study are known to be associated

with dietary sources. In particular, G. geotrichum and P. camemberti

are used as starters for the production of many cheeses [24–25].

Accordingly, G. geotrichum has been commonly reported in human

stool samples [9–12]. P. brevicompactum, which was also identified in

our study, has been previously reported to be part of the oral

microbiome in healthy individuals, but it has not been identified

among the gut microbiota [26]. P. brevicompactum is frequently

isolated from smoked dry-cured hams [27]. The P. dipodomyicola

species that was identified in this study has also been reported in

food [28]. The A. flavipes and P. allii species are usually found to be

associated with cereal grains [29–31]. To the best of our

knowledge, we are the first to report the presence of this species

in a stool sample from an obese individual using a culture-

dependent method. The A. versicolor species found in this stool

sample is an environmental airborne fungal species [32]. A.

versicolor and P. chrysogenum have also been previously isolated from

dry cured meat products [33]. Accordingly, previous studies have

detected these species in human stool samples [11,12]. The

Cladosporidium sp. isolated from our subject’s stool sample is often

found on fruit, such as grapes [34], and has been previously

reported in stool samples [11].

The B. bassiana and I. farisona detected in this study are

entomopathogenic fungi that are used as biocontrol agents in

agriculture [35], which can explain their presence in the human

gut. C. tropicalis, which was also isolated from our subject’s stool

sample, has commonly been reported in human stool [23], in the

intestine of normal individuals (up to 30%) and in the oral

microbiome of healthy individuals [36]. The Climacocystis sp.

detected here is an edible fungus, which explains the detection of

this fungus in this stool sample. This fungus was not found to be

present in stool in previous studies.

The Malassezia species isolated from our subject’s stool sample

are normal flora found on the skin of 77–80% of healthy adults

[37]. These species were also found in scalp skin from healthy

Table 2. Results of PCR testing with positive control. NA non available.

Taxon Primers Positive control PCR
Blast
coverage% Blast identity % GenBank refence number

Amoeba AmiF1/Ami9R Acanthamoeba castellanii Positive 100 99 A.castellani (GU001160.1)

Hartmannella vermiformis Positive 100 99 H. vermiformi (DQ123623.2)

Acanthamoeba JDP1/JDP2 Acanthamoeba castellanii Positive 100 99 A. castellanii (GU001160.1)

Entamoeba JVF/DSPR2 NA

Hartmannella Hv1227F/Hv1728R Hartmannella vermiformis Positive 100 99 H. vermiformis (HM363627)

Naegleria F/R NA

Ciliophora 121 F/1147R Colpoda steinii Positive 100 99 C. steineii (DQ388599.1)

Chlorophyta UCP1F/UCP1R Chlorella vulgaris Positive 95 93 C. vulagaris (AB001684.1)

Chlorophyta UCP2F/UCP2R Chlorella vulgaris Positive 95 93 C. vulagaris (AB001684.1)

Diatoms 18S/28R NA

Dinoflagellates DinocomF1/Dino18SR1 Poterioochromonas malhamensis Positive 100 98 P. malhamensis (FN662745.1)

Diplomonads DimA/DimB NA

Euglenophyta EAF/EAF3 NA

Kinetoplastidia Kinetokin1/kinetokin2 Leshmania major Positive 99 99 L. major (FN677342.1)

Kinetoplastidia KinSSUF1/KinSSUR1 Leshmania major Positive 99 99 L. major (FN677342.1)

Microsporidia V1/PMP2 Encephalitozoon hellem Positive 100 99 E. hellem (AF039229.1)

Rhodophyta URP1F/URP1R NA

Rhodophyta URP2F/URP2R NA

Trichomonads TFR1/TFR2 NA

Fungi MalF/MalR Malassezia restricta Posisitve 100 98 M. restricta (JN980105)

Fungi ITS1F/ITS4R Candida albicans Posisitve 100 99 C. albicans (L28817.1)

Fungi NSR1/FR1 Candida albicans Positive 100 99 C. albicans (JN940588.1)

Fungi FunF/FunR Candida albicans Positive 100 99 C. albicans (JN940588.1)

Universal Eukaryotes euk528F/1391R Acanthamoeba castellanii Positive 98 99 A. castellanii (GU001160.1)

Euk1A/Euk516r Acanthamoeba castellanii Positive 100 99 A. castellanii (GU001160.1)

Chloroplast Plant rbcLZ1/rbcL19b Solanum sp. Positive 98 94 S. physalifolium (HQ23562)

doi:10.1371/journal.pone.0059474.t002
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volunteers [38]. However, M. pachydermatis and M. globosa were

previously found in stool from healthy and ill subjects [12,13] by

culture-independent methods. We report for the first time the

detection of M. restricta in stool by molecular methods. The

Malassezia species that were detected by culture-independent

methods in this study were confirmed by culture. The presence

of these fungi in our subject’s stool sample could be either

a contaminant from the subject’s skin or a part of human gut flora,

so more investigation is needed to confirm these results. The

uncultured Chytridiomycota detected in this stool sample is a member

of the Chytridiomycota family (Figure 2). Some Chytridiomycota species

infect potatoes and tomatoes [39], which could explain the

incidence of these fungi in the human gut. To the best of our

knowledge, we are the first to report this species in a stool sample

from an obese subject.

In addition to fungi, we detected 11 plant species, all of which

are known to be associated with human food and traditional

medicines. We identified the dietary plants Solanum lycopersicum

(tomato), Allium victorialis (onion family), Solanum tuberosum (potato),

Citrus aurantium (orange), Cicer arietinum, Musa acuminata/Ensete

ventricosum (banana), Lactuca sativa, Humulus lupulus (hops), Pinus

wallichiana. Helianthus annuus (sunflowers) and Brassica napus. The

sequences of Nicotiana tabacum and Nicotiana undulate that we

identified might be linked to the consumption of cigarettes by the

patient. A previous study has also reported the presence of N.

tabacum and C. arietinum in human stool [40].

The diversity of the plant species found in the stool sample can

be explained by the patient’s diet. Because of her obesity, she may

have a diet rich in plants. Some of the plant sequences found in

this stool sample, such as Atractylodes japonica, Fibraurea tinctoria,

Angelica anomala and Mitella nuda, are used as medicinal plants [41].

The genus Atractylodes has been found in the oral microbiome of

healthy individuals [26]. The plants that we identified in this study

are similar to those found in Nam’s study, which detected different

plants from 10 Korean individuals [10]. We did not find the same

plant species as those identified from Korean subjects because our

obese subject did not have the same diet and lived in a different

environment.

Finally, the Blastocytis sp. that we detected is commonly found in

healthy microbiota [9,10] and is associated with irritable bowel

syndrome.

Table 3. Sequencing results on PCR products from clones.

Primers clones Sequences of Species Blast Identity% and coverage% Kingdom

ITS1F/ITS4R 75 96% Galactomyces geotrichum 99 and 99 Fungi

4% Penicillium camemberti 99 and 99 Fungi

MalFMalR 57 28.07% Malassezia pachydermatis 92 and 100 Fungi

17.54% Malassezia restricta 100 and 99 Fungi

54.4% Malassezia globosa 99 and 99 Fungi

EUK1A/EUK516r 104 20.4% Blastocyctis sp. 99 and 99 Protist

0.96% Uncultured Chytridiomycota 95 and 99 Fungi

0.96% Fibraurea tinctoria 98 and 100 Plant

1.9% Allium victorialis 98 and 100 Plant

3% Nicotiana tabacum 99 and 99 Plant

0.96% Helianthus annuus 96 and 100 Plant

0.96% Caprifoliaceae environmental 98 and 99 Plant

0.96% Petrophile canescens 98 and 99 Plant

60% Solanum lycopersicum 99 and 99 Plant

5% Humulus lupulus 98 and 100 Plant

3% Cicer arietinum 99 and 98 Plant

0.96% Pinus wallichiana 100 and 98 Plant

0.96% Mitella nuda 100 and 98 Plant

JVF/DSPR2 141 94.32% Galactomyces geotrichum 98 and 99 Fungi

0.71% Candida tropicalis 98 and 99 Fungi

0.71% Citrus aurantium 99 and 100 plant

4.25% Atractylodes Japonica 98 and 99 Plant

0.71% Pinus wallichiana 99 and 100 Plant

78% Nicotiana undulate 98 and 99 Plant

rbcLZ1/rbcL19b 31 3% Musa acuminata/Ensete ventricosum 99 and 99 Plant

6.25% Lactuca sativa 99 and 99 Plant

3% Solanum tuberosum 100 and 99 Plant

3% Brassica napus/Arabidopsis lyrata 100 and 99 Plant

6.25% Angelica anomala/Davidia
involucrata/Aucuba japonica

100 and 99 Plant

doi:10.1371/journal.pone.0059474.t003
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Conclusions
Of 40 phyla of protists described in literature, eight phyla

(Diatoms, Apicomplexa, Ciliate, Parabasalids, Fornicata, Amoe-

bozoa, Microsporidia, Fungi) have been previouslsy detected in

human gut [42]. However, most species including Gardia

intestinalis (Parabasalids), Blastocystis hominis (Diatoms), Cryptospo-

ridium parvum (Apicomplexa), Balantidium coli (ciliates), Dientamoeba

fragilis (Fornicata), Entameba histolytica (Archamoeba ), Encephali-

tozoon intestinalis (Microsporidia) and Candida tropicalis (Fungi) have

been reported in patients with digestive tract disease [42–44].

Here, we showed that representatives of two of these eight

phyla (Fungi and Blastocystis) can be also detected in one

individual without digestive tract disease. Among 19 micro-

eukaryotes found in this individual, five fungal species were

detected using PCR-based and culture approaches, 16 fungal

species were detected by culture and eight species including

seven different fungi and one Blastocystis were detected by

molecular methods. Accordingly, a total of 13 plants species and

eight fungi including Aspergillus flavipes, Beauveria bassiana, Isaria

farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicil-

lium camemberti, Climacocystis sp. and Malassezia restricta were

detected for the first time in the human gut microbiota. These

data illustrate that eukaryotes have to be searched in the

digestive tract using a combined approach and that culture must

be kept as a key approach. As a a single stool sample was used

herein, results here reported constitute a baseline for futher

studies to assess eukaryotic diversity in healthy and diseased

individuals from various geographical origins.

Figure 1. Eukaryotes detected by PCR and culture. Lines connect species found by the two methods. (green color represents plant, red
are fungi, pink color are protozoan, purple color are fungi identified by two methods).
doi:10.1371/journal.pone.0059474.g001
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Materials and Methods

Fecal Sample Collection
One stool specimen was collected in a sterile plastic container

from a 27-year-old Caucasian woman, who weighed 120 kg with

a body mass index (BMI) of 48. 9 and lived in Marseille, France.

After collecting the stool sample, 1 g aliquots were preserved in

sterile microtubes stored at 280uC until use. The patient provided

her written consent to participate in the study, and the agreement

of the local ethics committee of the IFR48 was obtained

(agreement number 09-022, Marseille, France). The subject did

not take antibiotic or antifungal treatments in the month prior to

the stool collection, but we were not given information about her

diet.

DNA Extraction
DNA was extracted using the QiampH stool mini kit (Qiagen,

Courtaboeuf, France) as has been previously described [9]. Briefly,

200 mg of stool was placed in a 2-mL tube containing a 200 mg

mixture of 0.1–0.5 mm glass beads and 1.5-mL of lysis buffer

Table 4. Fungi cultured using different culture media.

PCR ITS from cultured fungi % Coverage and % Identity Media for culture

Penicillium sp./P. camemberti 99 and 100 PDA

Hypocrea lixii/Penicillium chrysogenum 99 and 98 PDA/CZAPEK

Penicillium brevicompactum 95 and 97 PDA/CZAPEK

Penicillium allii 99 and 99 Dixon agar

Penicillium dipodomyicola 99 and 100 Dixon agar

Aspergillus flavipes 100 and 99 CZAPEK

Aspergillus versicolor 100 and 99 PDA

Beauveria bassiana 99 and 99 PDA

Isaria farinosa 97 and 98 CZAPEK

Galactomyces geotrichum 100 and 100 Dixon agar

Malassezia globosa 100 and 99 Dixon agar

Malassezia restricta 100 and 99 Dixon agar

Malassezia pachydermatis 100 and 93 Dixon agar

Candida tropicalis 99 and 100 Dixon agar/PDA

Cladosporium sp. 100 and 99 Dixon agar

Climacocystis sp. 98 and 96 Dixon agar

doi:10.1371/journal.pone.0059474.t004

Table 5. Cultured fungi compared to fungi detected by PCR and sequencing.

Cultured fungi PCR cloning sequencing-detected fungi

Galactomyces geotrichum Galactomyces geotrichum

Malassezia globosa Malassezia globosa

Malassezia restricta Malassezia restricta

Malassezia pachydermatis Malassezia pachydermatis

Candida tropicalis Candida tropicalis

Cladosporium sp.

Climacocystis sp.

Penicillium sp./P. camemberti P. camemberti

Hypocrea lixii/Penicillium chrysogenum

Penicillium brevicompactum

Penicillium allii

Penicillium dipodomyicola

Aspergillus flavipes

Aspergillus versicolor

Beauveria bassiana

Isaria farinosa

Uncultured Chytridiomycota

doi:10.1371/journal.pone.0059474.t005
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(ASL) (Qiagen). Mechanical lysis was performed by bead-beating

the mixture using a FastPrep BIO 101 apparatus (Qbiogene,

Strasbourg, France) at level 4.5 (full speed) for 90 s. A minor

modification was made to the manufacturer’s procedure by

increasing the proteinase K incubation time to 2 h at 70uC. For
all DNA extractions, 200 mL of distilled water was used as

a negative control. The extracted DNA was stored at 220uC until

use.

PCR Amplification
A total of 25 eukaryotic primer pairs for PCR were selected

from the literature and used to amplify the 18S rRNA gene,

internal transcribed spacer (ITS) and a chloroplast gene (Table 1).

Each set of primers was blasted against corresponding taxa of each

phylum in nucleotide BLAST program from the National Center

for Biotechnology Information (NCBI) to test its ability to amplify

the corresponding phylum. The sets of primers for were selected

on the basis of a 100% coverage and a 100% identity shown by at

least one of the primer from a set. Primers which yielded negative

PCR were tested using positive controls specific for each phylum

(Table 2). For each eukaryotic primer pair, the 50 mL PCR

reaction mixture contained 5 mL of dNTPs (2 mM of each

nucleotide), 5 mL of DNA polymerase buffer (Qiagen) 2 ml of

MgCL2 (25 mM), 0.25 mL HotStarTaq DNA polymerase (1.25 U)

(Qiagen), 1 mL of each primer (Eurogentec, Liège, Belgium) and

5 ml of DNA. PCR was performed with a 15 min initial

denaturation at 95uC followed by cycles of 95uC for 30 sec. The

initial extension was performed at 72uC for 1 min, and the 5 min

final extension was performed at 72uC. The annealing tempera-

ture and the number of cycles used for each primer are presented

in Table 1. All PCRs were performed using the 2720 thermal

cycler (Applied Biosystems, Saint Aubin, France). A reaction made

up of buffer without DNA was used as a negative control for each

PCR run. Amplified products were visualized with ethidium

bromide staining after electrophoresis using a 1.5% agarose gel.

The PCR products were purified using the Nucleo- FastH 96 PCR

Kit (Marcherey-Nagel, Hoerdt, France) according to the manu-

facturer’s instructions. To test for potential PCR inhibitors, 1 ml of
A. castellanii was added to 4 ml of stool DNA prior to PCR

amplification.

Cloning and Sequencing
PCR products were cloned separately using the pGEMH -T

Easy Vector System Kit (Promega, Lyon, France) as described by

the manufacturer. The presence of the insert was confirmed by

PCR amplification using M13 forward (59-GTAAAACGACGGC-

CAG-39) and M13 reverse (59-AGGAAACAGCTATGAC-39)

primers (Eurogenetec) and an annealing temperature of 58uC.
PCRs were performed as described above. Purified PCR products

were sequenced in both directions using the Big DyeH Terminator

V1.1 Cycle Sequencing Kit (Applied Biosystems, Villebon-sur-

Yvette, France) with the M13 forward and M13 reverse primers.

These products were run on an ABI PRISM 3130 automated

sequencer (Applied Biosystems). Eukaryotes were identified by

comparing our obtained sequences with the sequences in the

GenBank database using BLAST. The sequence alignments were

performed using the clustalw algorithm for multiple sequence

alignments (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.

pl?page = /NPSA/npsa_clustalwan.html). Phylogenetic trees were

constructed using the Mega version 5 bootstrap kimura2-

parameter model [45].

Fungi Culture and Identification
One gram of stool was diluted in 9 mL of sterile phosphate-

buffered saline (PBS), and a six-fold serial dilution from 1021 to

1026 was prepared in PBS. Each dilution was spread in duplicate

on potato dextrose agar (PDA) (Sigma-Aldrich, Saint-Quentin

Fallavier, France), Czapeck dox agar (Sigma-Aldrich) supplemen-

ted with chloramphenicol (0.05 g/l) and gentamycin (0.1 g/l), and

Dixon agar [46] supplemented with chloramphenicol (0.05 mg/

mL) and cycloheximide (0.2 mg/mL). Dixon agar medium was

prepared by adding 1 L of distilled water to a mixture of 36 g of

malt extract, 6 g of peptone, 20 g of ox bile, 10 mL of Tween 40,

2 mL of glycerol, 2 mL of oleic acid and 12 g of agar (Sigma-

Aldrich). The mixture was heated to boiling to dissolve all

components, autoclaved (20 min at 121uC) and cooled to

approximately 50uC. Agar plates made from this media were

placed in plastic bags with humid gas to prevent desiccation and

incubated aerobically at room temperature (,25uC) in the dark.

The Dixon Agar medium plates were incubated aerobically at

30uC. Growth was observed for two weeks. The solution used for

dilution of the sample was spread on the same media and

Figure 2. Phylogenetic tree of 18S rRNA gene sequences of uncultured Chytricomycota.
doi:10.1371/journal.pone.0059474.g002
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incubated in the same conditions as a negative control. DNA

extracted from colonies as described above was amplified with the

fungal primers ITS 1F/ITS 4R and MalF/Mal R. The purified

PCR products were submitted to direct sequencing using the

ITS1R/ITS4 and MalF/Mal R primers with the Big DyeH
Terminator V1,1 Cycle Sequencing Kit (Applied Biosystems) as

described above. When the peaks of the sequence overlapped, the

amplicons were cloned as described above.

All sequences superior to 200 base pairs are available in

GenBank with reference number (KC143356–KC143757).
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