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The mechanical properties of tendon play a fundamental role to passively transmit forces

from muscle to bone, withstand sudden stretches, and act as a mechanical buffer

allowing the muscle to work more efficiently. The use of non-invasive imaging methods for

the assessment of human tendon’s mechanical, structural, and biochemical properties

in vivo is relatively young in sports medicine, clinical practice, and basic science.

Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon

injury and the characterization of recovery treatments. While ultrasonographic imaging

is the most popular tool to assess the tendon’s structural and indirectly, mechanical

properties, ultrasonographic elastography, and ultra-high field magnetic resonance

imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore

tendon tissues. This paper highlights some methodological cautions associated with

conventional ultrasonography and perspectives for in vivo human Achilles tendon

assessment using ultrasonographic elastography and UHF MRI.
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INTRODUCTION

The mechanical properties of tendon are highly involved in muscle tension transmission to the
skeleton and in the storage-recoil process of elastic potential energy (Alexander and Bennet-Clark,
1977; Roberts et al., 1997) playing an important role in daily activities and sport practices. Tendons
exhibit non-linear viscoelastic behavior (Fung, 1981) which has a direct effect on the efficiency
of muscular tension transmission to the skeleton and limits stress on muscle (e.g., buffer effect of
tendon to slow down eccentric velocity of muscle contraction in jump landing). Tendon viscoelastic
properties are highly influenced by the composition of tendinous tissues (Langberg et al., 2001;
Kjaer et al., 2009; Thorpe et al., 2012) and especially collagens, proteoglycans, and water (Kjaer,
2004; Wang, 2006; Connizzo et al., 2013). While it is very difficult to dissociate both elastic and
viscous behaviors, it has been shown that the crosslinking of collagens increases the elastic modulus
and reduced strain at failure (Thompson and Czernuszka, 1995) whereas several components of
the extracellular matrix (Kjaer, 2004), especially water (van der Rijt et al., 2006) and proteoglycans
(Yoon and Halper, 2005), can be associated with the viscous behavior observed during assessment
in vitro (Silver et al., 2002; Gautieri et al., 2012).
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Over the last two decades, ultrasonography has remained the
gold standardmethod to assess tendon structural andmechanical
properties non-invasively in vivo (Fukashiro et al., 1995;
Maganaris and Paul, 2000, 2002; Maganaris, 2002; Magnusson,
2002; Kubo et al., 2002c; Arampatzis et al., 2005). Effects of
aging (Magnusson et al., 2003a; Mademli and Arampatzis, 2008;
Kubo et al., 2014), gender (Kubo et al., 2003; Magnusson et al.,
2007; Westh et al., 2008), rehabilitation (Arya and Kulig, 2010;
Geremia et al., 2015), bedrest (Kubo et al., 2000, 2004) or
chronic interventions such as training (Kubo et al., 2002a,b;
Fouré et al., 2010, 2013) have been abundantly studied. From
an experimental point of view, structural and mechanical tendon
properties are commonly assessed in vivo from the force-
elongation and stress-strain relationships (Figure 1) obtained
with a constant increase in tension (i.e., loading phase) applied
on the tendon due to a passive stretching of muscle tendon
unit (Morse et al., 2008) or a controlled isometric contraction
(Fouré et al., 2010). Tendon length change is then measured
from ultrasound images and synchronized to external torque
measured in most cases by a dynamometer (Maganaris and Paul,
2002). In addition, tendon hysteresis can also be determined
from the relationship including loading and unloading phases
(Maganaris and Paul, 2000). Many methodological strategies
associated with the experimental conditions have been reported,
discussed and reviewed (Maganaris, 2005; Arampatzis et al., 2008;
Finni et al., 2013; Lichtwark et al., 2013; Seynnes et al., 2015).
The real time evaluation of tendon length changes used in the
non-invasive assessment of tendon structural properties during
contraction is a considerable advantage of ultrasound imaging.
However, there remain associated methodological issues from
the limited spatial coverage of ultrasound probes (e.g., 2D
assessment of 3D stain, restricted planar field of view) and the
data normalization required to calculate force or stress values
from external torque measurements and strain on the basis
of tendon elongation. Indeed, most of the published studies
chose arbitrary values for tendon cross sectional area (CSA) and
slack length (Maganaris, 2002; Magnusson et al., 2003b; Arya
and Kulig, 2010) when it is now well known that the Achilles
tendon slack length does not correspond to the tendon length
when the ankle joint angle is at 90◦ (Nordez et al., 2010; Hug
et al., 2013) and that CSA is not homogeneous along the tendon
(Bohm et al., 2015; Lenskjold et al., 2015). Other limitations were
previously reviewed in detail (Seynnes et al., 2015). Thus, the
mechanical properties of tendinous tissues assessed from stress-
strain relationship estimated from external torque measurement
and ultrasound imaging can appear inaccurate considering
uncontrolled or arbitrary fixed parameters and variability among
individuals. To avoid these methodological issues associated with
the experimental design and choices in the normalization of
the parameters, additional special imaging technologies have
been developed to quantitatively assess biomechanical and
biochemical properties of tissues.

The goal of this paper is to highlight the emergence of new
imaging methodologies as powerful tools for the non-invasive
exploration of tendinous tissues. Although for now elastography
is mainly used on skeletal muscle (Bensamoun et al., 2006; Hug
et al., 2015), technical evolution of ultrasonographic devices

FIGURE 1 | Experimental position of the subject during assessment of

Achilles tendon structural and mechanical properties with

ultrasonography and dynamometry. During passive motion of ankle joint or

isometric ramp of plantar flexors contraction, displacement of myotendinous

junction is recorded with ultrasonography while external torque is measured

with an isokinetic dynamometer. Considering additional measurements of

tendon length or estimations of lever arm and the relative contribution of

muscles involved in tendon elongation, force-length relationship is established

in order to characterize tendon stiffness (structural property, dependent of

tendon geometry) and hysteresis in case of loading-unloading cycle. In

addition, stress-stain relationship of the tendon can be determined from initial

tendon length and tendon cross sectional area. Elastic modulus of tendinous

tissues can further be assessed (mechanical property intrinsically related to the

tissue, independent of the geometry).
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increases applications of elastography on tendon (Helfenstein-
Didier et al., 2016). This mini-review is focused on recent
developments and applications of ultrasound elastography and
ultra-high field magnetic resonance imaging for the non-invasive
assessment of tendon biomechanical and biochemical properties
(Figure 2).

ASSESSMENT OF ACHILLES TENDON
BIOMECHANICAL PROPERTIES WITH
ELASTOGRAPHY

Over the last decade, there has been growing evidence that
elastography may be a useful tool in detecting subtle changes in
musculotendinous mechanical properties that occur early in the
course of an injury or disorder.

Ultrasound Elastography
Application of ultrasound elastography on skeletal muscle has
been widely developed (Bercoff et al., 2004; Gennisson et al.,
2013; Brandenburg et al., 2014). As reported in a recent review,
“supersonic shear wave imaging (SSI) is the current state of the
art in ultrasound elastography” (Hug et al., 2015). This latter

technology consists in applying a stress on soft tissue through

the acoustic radiation force of a long burst of focused ultrasound

pulses (i.e., ultrasound push beams) producing a shear wave
observed via high frame pulse-echo ultrasound imaging. The
time shift of the ultrasound echo is then used to measure
deformation associated with the displacement of the shear wave
in the tissue. Shear wave elastography is a quantitative method to
measure the shear wave velocity to estimate the localized elastic
properties of tissue in vivo (Bercoff et al., 2004; Brandenburg
et al., 2014). Considering tissue as elastic and homogeneous, the
shear modulus (µ, kPa) is calculated using the equation: µ =

ρV2, where ρ is the density of the tissue (kg.m−3) and V the
shear wave velocity (m.s−1) (Bercoff et al., 2004; Helfenstein-
Didier et al., 2016). Considering isotropic locally homogeneous
and quasi-incompressible biological tissues, Young’s modulus (E)
can be estimated from the shear modulus using the following
equation: E ≈ 3µ (Bercoff et al., 2004; Hug et al., 2015).
While many studies have recently assessed muscle mechanical
properties with SSI (Lacourpaille et al., 2014; Hug et al., 2015; Le
Sant et al., 2015), thismethodwas also used to determine the slack
length of Achilles tendon during passive stretches of the ankle
(Hug et al., 2013). Although measurements saturate at relatively
low tension levels in the latter study (∼20◦ in plantar flexion
during passive stretching) due to the high shear wave speed

FIGURE 2 | Schematic representation of emergent imaging techniques for the assessment of tendon biomechanical properties and biochemical

composition. (A) Supersonic Shear Imaging can be used to assess shear elastic modulus and anisotropy of the tendon via the analysis of shear wave velocity and

dispersion. (B) Multimodal Magnetic Resonance Imaging can be used to quantify glycosaminoglycan content, assess collagen matrix integrity and characterize

diffusivities of water molecules inside tendon at rest.
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observed in stiff tissue such as tendon, feasibility, and accuracy
of the slack length measurement with SSI was demonstrated
(Hug et al., 2013). Given that muscle and tendon slack lengths
correspond to different ankle angles, the latter study also shed
light on the complex interaction between muscles and Achilles
tendon during passive motion of lower limbs.

In the last 5 years, a growing interest in tendon mechanical
properties assessment with SSI can be observed. For instance,
differences in shear wave velocities have been highlighted among
musculotendinous structures (i.e., tendon, aponeurosis, muscle)
and according to age (Slane et al., 2015, 2016; Turan et al., 2015).
Arda et al. (2011) showed that Young’s modulus at rest is higher
in Achilles tendon (52 ± 25 kPa in transverse plane and 74 ±

46 kPa in longitudinal plane) as compared to the gastrocnemius
muscle (11 ± 4 kPa in longitudinal plane). It is noteworthy that
a high inter-individual variability was shown (Arda et al., 2011)
and shear wave elastography measurements were dependent on
imaging plane (Chino et al., 2015). From a methodological point
of view, shear wave elastography in soft tissues such asmuscle and
tendon must be performed with the lightest transducer pressure
(Kot et al., 2012). In addition, both transducer positioning
and limb posture have to be carefully checked to limit spatial
variations in Achilles tendon shear wave speed (DeWall et al.,
2014). Aubry et al. (2013) found an effect of ankle joint angle
on shear wave propagation velocity. In the latter study, Achilles
tendon anisotropy was calculated on the basis of the difference in
the shear wave speed determined in the axial and the longitudinal
planes (Aubry et al., 2013). The relative anisotropy coefficient and
elastic modulus of Achilles tendon were increased when the ankle
was dorsiflexed (Aubry et al., 2013). Brum et al. (2014) assessed
the elastic anisotropy of the human Achilles tendon using shear
wave dispersion analysis. In this study, shear wave velocity
dispersion was measured in both axial and longitudinal planes
to the Achilles tendon fiber orientation. Given that the shear
wavelength in the longitudinal direction is five times larger than
the mean tendon thickness, the wave propagation is guided along
the tendon by successive reflections at the tendon boundaries
(Brum et al., 2014). Hence, the use of a specific model was
needed to characterize tendon viscoelastic properties taking into
account the latter phenomenon. On the basis of the shear wave
dispersion analysis developed by Brum et al. (2014), Helfenstein-
Didier et al. (2016) found that Achilles tendon shear modulus
increases with passive dorsiflexion. Regardless of ankle angle, the
shear modulus was significantly higher in the proximal region of
the Achilles tendon as compared to the more distal one. Very
good reproducibility results were reported with coefficients of
variation lower than 1% and shear modulus values determined
with the shear wave dispersion analysis and conventional shear
wave elastography technique were highly correlated (r = 0.844, P
< 0.001). This indicates that SSI can be used to compare tendon
mechanical properties determined from shear modulus and then
shear elasticmodulus across populations and could have a clinical
relevance in tendinopathy (Helfenstein-Didier et al., 2016). It is
noteworthy that the assumption associated to the SSI technique
of an elastic and homogeneous medium is not necessarily entirely
correct in the tendon. In fact, the anisotropic characteristics and
inter-individual variabilities in microarchitecture of the tendon

could limit interpretations when comparing healthy individuals
or assessing the effects of interventions with SSI. In addition,
measurement of shear elastic modulus with SSI is based on
a constant tendon density which can be different in healthy
and pathologic tendons. Indeed, it was clearly shown that
tendinopathies can induce changes in the structural organization
and biochemical composition of tendinous tissues (de Mos et al.,
2007; Pingel et al., 2014) leading to a potential inaccuracy in
shear elastic modulus assessment. Nevertheless, relevant clinical
assessment of tendon disorders assessed with SSI have already
been reported in a recent review (Klauser et al., 2014). For
instance, lower tendon stiffness was found in patient with
torn Achilles tendon as compared to healthy subjects (Chen
et al., 2013) suggesting that shear wave elastography provides
relevant biomechanical information for Achilles tendon function
assessment. In addition, a lower shear wave velocity was found
in stretched Achilles tendon of patients with tendinopathy as
compared to healthy control subjects whereas no significant
difference was reported in Achilles tendon anisotropy (Aubry
et al., 2015).

Furthermore, 3D ultrafast ultrasound imaging for the 3D
mapping of stiffness, tissue motion, and flow in humans was
recently demonstrated in vivo as a future new clinical application
of ultrasound with reduced intra- and inter-observer variability
(Provost et al., 2014). On that basis, it can be expected that
methodological developments for 3D assessment of mechanical
properties in soft tissues with SSI will continue to progress.
However, for now, the 3D exploration of musculoskeletal system
with shear wave elastography remains associated with nuclear
magnetic resonance techniques (Muthupillai et al., 1995).

Magnetic Resonance Elastography
In comparison to ultrasound elastography, magnetic resonance
elastography (MRE) has the advantages of full 3D acquisition
and can explore deep muscles with large spatial coverage in
a well-defined and reproducible coordinate system (Gennisson
et al., 2010). MRE typically uses vibrations of a single frequency
within the audio frequency range. The shear waves are generated
by an electro-mechanical transducer on the surface of the skin
and the tissue motion is measured using MRI technique called
phase-contrast MRI (Muthupillai et al., 1995). MRE allows
assessment of mechanical properties of soft tissues (Mariappan
et al., 2010) such as skeletal muscle (Dresner et al., 2001;
Bensamoun et al., 2006). MRE has been used to investigate non-
invasively lower limb skeletal muscles mechanical properties and
detect abnormalities in patients with neuromuscular disorders
as compared to matched control subjects (Basford et al., 2002).
However, in early studies on skeletal muscle, neither viscosity
nor anisotropy were taken into account to assess mechanical
properties. Subsequent MRE studies demonstrated the high
anisotropy of the muscle tissue (Papazoglou et al., 2005).
Recently, multi-frequency MRE and rheological models were
used to assess the viscoelastic shear properties of thigh muscles in
passive condition in vivo (Chakouch et al., 2016). So far, MRE has
only been used on skeletal muscle and no exploration on tendon
has been performed in vivo. Indeed, very stiff tissues such as
tendon (in comparison to skeletal muscle) require much higher
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vibration frequencies for mechanical properties assessment with
MRE. Current MRI scanners do not have gradient hardware that
is capable of encoding wave motion at such high frequencies
(Mariappan et al., 2010). These limitations may be addressed in
the future with specialized hardware solutions and development
of ultra-high field (UHF) MRI clinical scanners with special
high-speed imaging techniques (Glaser et al., 2006).

Considering that the intrinsic mechanical properties of the
tendinous tissues are closely related to the tendon composition,
UHF MRI appears a powerful imaging technique to assess
microstructural and biochemical parameters closely linked to
the viscoelastic behavior of the Achilles tendon; meanwhile,
technological development is still necessary for the direct
assessment of the tendon mechanical properties with MRE.

ASSESSMENT OF ACHILLES TENDON
BIOCHEMICAL AND STRUCTURAL
PROPERTIES WITH MRI

Magnetic resonance imaging allows an accurate assessment of
biochemical composition and microstructure of musculoskeletal
tissues. However, visualization of the tendon remains difficult
due to a very short transverse relaxation time (i.e., T2 < 1.5 ms)
leading to a partial or total disappearance of signal in the tendon
with relatively long echo time used in conventional clinical
MRI sequences (Gatehouse and Bydder, 2003). Thus, special MR
sequences are required to acquire signal from the tendon. The
most frequently used sequence in the recent studies consisted in a
quantitative imaging of tendon using ultrashort echo time (UTE;
Robson et al., 2004; Juras et al., 2012b) and variable echo time
sequences (Song and Wehrli, 1998; Juras et al., 2013b).

Furthermore, improved signal to noise ratio (SNR) in
emerging 7 Tesla (7T) whole body MRI scanners—SNR being
proportional to the field strength—provides opportunities for
easier examinations of musculoskeletal structures (Trattnig et al.,
2015) and especially Achilles tendon (Trattnig et al., 2012).
Hence, many studies are now using 7T-MRI to explore tendon
structure and quantitatively assess structural and biochemical
properties in vivo (Trattnig et al., 2012). For instance, Han et al.
succeeded in using high-resolution 3DUTE sequence to visualize
the Achilles tendon microstructure in human healthy volunteers
(Han et al., 2014).

Tendon Relaxation Constants
Quantitative MRI is widely used to characterize potential
alteration of musculoskeletal tissues. Change in T2

∗ relaxation
time is commonly assessed in skeletal muscle to quantify the
effects of edema/inflammation processes associated with acute
injury (Fouré et al., 2015b) or muscle disease (Arpan et al., 2013).

Despite the very short transverse relaxation time of the
tendon, T2

∗ is themost popular relaxation constant used to detect
potential collagen matrix alteration. Using variable echo time
sequence, the bi-exponential T2

∗ signal decay has been analyzed
in healthy subjects and patients with tendinopathies (Juras et al.,
2012b, 2013b). A strong correlation between clinical score and
the short component T2

∗ of pathologic tendon was demonstrated

at 3T (Juras et al., 2013b). It is noteworthy that the increased SNR
at 7T can provide higher accuracy of T2

∗ calculation as compared
to 3T (Juras et al., 2012b). Although the short component of T2

∗

was shown to be a robust and promising biomarker of tendon
structural alterations (Chang et al., 2016), other parameters such
as glycosaminoglycan content appear to be more specific to
the changes in biochemical properties of injured or pathologic
tendon.

The T2 assessment of supraspinatus tendon was shown to be
reproducible (Anz et al., 2014) but it was only assessed on healthy
volunteers and no data are available to check the sensitivity of this
parameters to structural and/or biochemical changes in patients
with tendinopathies and tendon injuries.

Another constant associated to both transverse and
longitudinal relaxation times of the tissue (T1ρ) is also used to
assess musculoskeletal tissues (Wang and Regatte, 2015) and
especially cartilage (Regatte et al., 2003). However, only one
study has assessed Achilles tendon T1ρ of cadaveric specimens
and healthy control subjects using a 2D UTE T1ρ sequence (Du
et al., 2010). For now, T1ρ is mostly used in basic sciences and
does not yet have widespread clinical use.

Glycosaminoglycans Content Assessment
The detection of biochemical changes can help the early diagnosis
of tendinopathy (Samiric et al., 2009). An increased amount of
proteoglycan content in the extracellular matrix was reported
in human pathologic tendons (Fu et al., 2007; Parkinson
et al., 2010). The sulfate and carboxyl groups associated with
glycosaminoglycans (GAG) provide proteoglycans with a net
negative charge, attracting molecules with positive charge such
as sodium ions. Thus, a strong correlation was reported between
GAG content and sodium MRI at UHF in ex vivo tendon (Juras
et al., 2013a). The increased GAG content in the tendon was
also correlated with the Victorian Institute Sport Assessment
(VISA) score (Attia et al., 2014), a widely used outcome
measure of functional status and pain level. Expression of several
proteoglycans typically associated with GAGs such as decorin,
versican, and aggrecan were found to be higher in pathologic
patellar tendon as compared to controls (Attia et al., 2014).

Sodium MRI is an imaging technique based on detection
of 23Na nuclei used to quantify sodium content in biological
tissues which can provide an indirect quantification of tendon
GAG content. A higher tendon sodium SNR was also reported
in patients with tendinopathy as compared to healthy control
(Juras et al., 2012a). Sodium MRI appears as a powerful and
non-invasive method to detect early biochemical changes in
tendinopathy. However, sodium imaging requires an MR system
with multinuclear capabilities and dedicated sodium antenna
coils. To bypass this issue, chemical exchange saturation transfer
(CEST) can be used to assess GAG content (GagCEST) in the
tendon. The method was first developed in cartilage (Schmitt
et al., 2011) and provided an index of GAG content on
the basis of chemical exchange between bulk water protons
and protons bound to solutes (Guivel-Scharen et al., 1998).
This method is emerging as a relevant alternative to sodium
MRI but requires complex image post-processing. In addition,
for accurate quantification of GagCEST effects, it is essential
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to account for inhomogeneities of the static magnetic field
B0 and radiofrequency field B1. Nevertheless, reproducible
measurements in knee cartilage of healthy volunteers have been
recently provided (Schreiner et al., 2016).

So far, only one study has assessed Achilles tendon
biochemical properties with multimodal MRI (i.e., T2

∗ mapping,
sodium MRI and GagCEST; Juras et al., 2015). This study
assessed effects of ciprofloxacin intake on Achilles tendon
properties of seven healthy males. It was previously shown
that fluoroquinolones such as ciprofloxacin can increase risk of
tendon injuries (Stephenson et al., 2013). While no significant
change in morphology and collagen matrix was detected with
T2

∗ mapping, a decrease in GAG content was seen 10 days after
ciprofloxacin intake using both sodiumMRI and GagCEST. This
biochemical change was not associated with clinical symptoms of
tendon injury. Therefore, multimodal MRI could potentially be
used to detect onset of abnormal change in tendon GAG content
representing one of the early stages of tendinopathy.

It was previously shown that tendon stiffness assessed with
ultrasonography and dynamometry is decreased in patients with
tendinopathies (Arya and Kulig, 2010). In addition, changes
in extracellular matrix highly influence tendon function (Kjaer,
2004). Given that stiffness is a structural characteristic of the
tendon, dependent on the intrinsic mechanical properties of
the tissues (i.e., related to the tendon biochemical composition)
and the microarchitecture of the tendon, it appears relevant to
concomitantly assess tendon biochemical and microarchitectural
properties of the tendon.

Microarchitecture Characterization
Diffusion tensor imaging (DTI) is sensitive to changes in
the microstructural architecture of biological tissues. Cell
membranes and other solid structures restrict water diffusion
leading to anisotropic diffusion. The integrity of tissues is then
assessed by the predominant direction, intensity and isotropic
characteristics of water diffusion within the biological structure.
For instance, DTI is used in skeletal muscle to determine
potential exercise-induced structural alterations (Fouré et al.,
2015a) and potential changes in muscle architecture (i.e., fiber
length and pennation angle) with muscle fiber tractography

(Cotten et al., 2015). For now, only a few studies have assessed
anisotropy/microarchitecture of the tendon (Momot et al., 2010)
in animals (Wellen et al., 2005; Helmer et al., 2006; Gupta et al.,
2010) and in humans (Sarman et al., 2015). Since tendon has a
short transverse relaxation time, methodological developments
are needed to obtain shorter echo time than those available on
conventional clinical scanners. Newmethodologies have recently
been presented in the ISMRM annual meeting (He et al., 2016;
Ma et al., 2016). Although methodological and experimental
issues such as dependence of tendon fibers orientation in the
static magnetic field (i.e., magic angle effect) have to be resolved,
there is likely to be additional methodological developments
for tendon microarchitecture assessment with UHF MRI and
growing interest of the MR community for tendon assessment.

CONCLUSION

Non-invasive imaging methods for the assessment of human
Achilles tendon in vivo have been widely adopted in the two last
decades. Democratization in the use of ultrasonographic devices
and technical developments in both ultrasound and MRI widen
the perspectives for tendon assessment in the clinical context
and for basic science. For now, ultrasonography is the most
popular tool to assess tendon structural properties. However,
the development of elastography based on ultrasound and MRI
appears complementary in assessing tendon biomechanical and
biochemical properties. While ultrasound elastography allows
local assessment of the tendon in real-time and potentially
during passive (i.e., passive joint motion) or active (i.e.,
muscle contraction) stretch, multimodal MRI can accurately
assess tendon structural and biochemical properties in three
dimensions at rest. Further studies associating quantitative MRI
and elastography are needed in order to assess non-invasively the
mechanical, structural and biochemical properties of the Achilles
tendon and lead to clinical applications for diagnosis, prognosis
and follow-up of tendinopathies and tendon injuries.
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