H. Alle, P. Jonas, and J. R. Geiger, PTP and LTP at a hippocampal mossy fiber-interneuron synapse, Proceedings of the National Academy of Sciences, vol.2, issue.2, pp.14708-14713, 2001.
DOI : 10.1002/hipo.450020209

E. Campanac, G. Daoudal, N. Ankri, and D. Debanne, Downregulation of Dendritic Ih in CA1 Pyramidal Neurons after LTP, Journal of Neuroscience, vol.28, issue.34, pp.8635-8643, 2008.
DOI : 10.1523/JNEUROSCI.1411-08.2008

URL : https://hal.archives-ouvertes.fr/hal-01766848

E. Campanac and D. Debanne, Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons, The Journal of Physiology, vol.561, issue.3, pp.779-793, 2008.
DOI : 10.1113/jphysiol.2004.071696

URL : https://hal.archives-ouvertes.fr/hal-01766849

R. H. Cudmore, L. Fronzaroli-molinieres, P. Giraud, and D. Debanne, Spike-Time Precision and Network Synchrony Are Controlled by the Homeostatic Regulation of the D-Type Potassium Current, Journal of Neuroscience, vol.30, issue.38, pp.12885-12895, 2010.
DOI : 10.1523/JNEUROSCI.0740-10.2010

URL : https://hal.archives-ouvertes.fr/hal-01766845

G. Daoudal, Y. Hanada, and D. Debanne, Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons, Proceedings of the National Academy of Sciences, vol.12, issue.2, pp.14512-14517, 2002.
DOI : 10.1152/jn.1997.77.1.86

URL : https://hal.archives-ouvertes.fr/hal-01766854

D. Debanne and M. M. Poo, Spike-timing dependent plasticity beyond synapse -pre-and postsynaptic plasticity of intrinsic neuronal excitability, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01766850

N. S. Desai, Homeostatic plasticity in the CNS: synaptic and intrinsic forms, Journal of Physiology-Paris, vol.97, issue.4-6, pp.391-402, 2003.
DOI : 10.1016/j.jphysparis.2004.01.005

W. Fan, J. Ster, and U. Gerber, Activation Conditions for the Induction of Metabotropic Glutamate Receptor-Dependent Long-Term Depression in Hippocampal CA1 Pyramidal Cells, Journal of Neuroscience, vol.30, issue.4, pp.1471-1475, 2010.
DOI : 10.1523/JNEUROSCI.5619-09.2010

T. F. Freund and I. Katona, Perisomatic Inhibition, Neuron, vol.56, issue.1, pp.33-42, 2007.
DOI : 10.1016/j.neuron.2007.09.012

A. Frick, J. Magee, and D. Johnston, LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites, Nature Neuroscience, vol.484, issue.2, pp.126-135, 2004.
DOI : 10.1113/jphysiol.1995.sp020696

R. C. Froemke, M. M. Merzenich, and C. E. Schreiner, A synaptic memory trace for cortical receptive field plasticity, Nature, vol.229, issue.7168, pp.425-429, 2007.
DOI : 10.1038/nature06289

L. L. Glickfeld and M. Scanziani, Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells, Nature Neuroscience, vol.101, issue.6, pp.807-815, 2006.
DOI : 10.1073/pnas.0304752101

E. M. Goldberg, B. D. Clark, E. Zagha, M. Nahmani, A. Erisir et al., K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons, Neuron, vol.58, issue.3, pp.387-400, 2008.
DOI : 10.1016/j.neuron.2008.03.003

D. Golomb, K. Donner, L. Shacham, D. Shlosberg, Y. Amitai et al., Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons, PLoS Computational Biology, vol.26, issue.8, p.156, 2007.
DOI : 10.1371/journal.pcbi.0030156.sg002

URL : https://hal.archives-ouvertes.fr/hal-00173756

A. I. Gulyas, G. G. Szabo, I. Ulbert, N. Holderith, H. Monyer et al., Parvalbumin-Containing Fast-Spiking Basket Cells Generate the Field Potential Oscillations Induced by Cholinergic Receptor Activation in the Hippocampus, Journal of Neuroscience, vol.30, issue.45, pp.15134-15145, 2010.
DOI : 10.1523/JNEUROSCI.4104-10.2010

M. H. Higgs and W. J. Spain, Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones, The Journal of Physiology, vol.19, issue.21, pp.5125-5142, 2011.
DOI : 10.1523/JNEUROSCI.1613-08.2008

H. Hu, M. Martina, J. , and P. , Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons, Science, vol.53, issue.5, pp.52-58, 2010.
DOI : 10.1016/j.neuron.2007.02.012

B. Hutcheon, Y. , and Y. , Resonance, oscillation and the intrinsic frequency preferences of neurons, Trends in Neurosciences, vol.23, issue.5, pp.216-222, 2000.
DOI : 10.1016/S0166-2236(00)01547-2

J. S. Isaacson and M. Scanziani, How Inhibition Shapes Cortical Activity, Neuron, vol.72, issue.2, pp.231-243, 2011.
DOI : 10.1016/j.neuron.2011.09.027

E. Klann and T. E. Dever, Biochemical mechanisms for translational regulation in synaptic plasticity, Nature Reviews Neuroscience, vol.23, issue.12, pp.931-942, 2004.
DOI : 10.1016/j.neuron.2004.07.022

T. Klausberger and P. Somogyi, Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations, Science, vol.94, issue.2, pp.53-57, 2008.
DOI : 10.1152/jn.00069.2005

D. M. Kullmann and K. P. Lamsa, Long-term synaptic plasticity in hippocampal interneurons, Nature Reviews Neuroscience, vol.16, issue.9, pp.687-699, 2007.
DOI : 10.1073/pnas.86.23.9574

D. M. Kullmann, A. W. Moreau, Y. Bakiri, and E. Nicholson, Plasticity of Inhibition, Neuron, vol.75, issue.6, pp.951-962, 2012.
DOI : 10.1016/j.neuron.2012.07.030

K. Lamsa, J. H. Heeroma, and D. M. Kullmann, Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination, Nature Neuroscience, vol.24, issue.7, pp.916-924, 2005.
DOI : 10.1523/JNEUROSCI.2661-04.2004

K. P. Lamsa, J. H. Heeroma, P. Somogyi, D. A. Rusakov, and D. M. Kullmann, Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit, Science, vol.280, issue.5372, pp.1262-1266, 2007.
DOI : 10.1126/science.280.5372.2121

D. A. Lewis, A. A. Curley, J. R. Glausier, and D. W. Volk, Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia, Trends in Neurosciences, vol.35, issue.1, pp.57-67, 2012.
DOI : 10.1016/j.tins.2011.10.004

K. X. Li, Y. M. Lu, Z. H. Xu, J. Zhang, J. M. Zhu et al., Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy, Nature Neuroscience, vol.276, issue.2, pp.267-273, 2012.
DOI : 10.1074/jbc.M105348200

G. Maccaferri, K. Toth, and C. J. Mcbain, Target-Specific Expression of Presynaptic Mossy Fiber Plasticity, Science, vol.279, issue.5355, pp.1368-1370, 1998.
DOI : 10.1126/science.279.5355.1368

R. Miles and J. C. Poncer, Metabotropic glutamate receptors mediate a post-tetanic excitation of guinea-pig hippocampal inhibitory neurones., The Journal of Physiology, vol.463, issue.1, pp.461-473, 1993.
DOI : 10.1113/jphysiol.1993.sp019605

M. N. Miller, B. W. Okaty, S. Kato, N. , and S. B. , Activity-dependent changes in the firing properties of neocortical fast-spiking interneurons in the absence of large changes in gene expression, Developmental Neurobiology, vol.4, issue.1, pp.62-70, 2011.
DOI : 10.1113/jphysiol.1987.sp016851

A. Norenberg, H. Hu, I. Vida, M. Bartos, J. et al., Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons, Proceedings of the National Academy of Sciences, vol.8, issue.1, pp.894-899, 2010.
DOI : 10.1038/nrn2044

Z. Nusser, Variability in the subcellular distribution of ion channels increases neuronal diversity, Trends in Neurosciences, vol.32, issue.5, pp.267-274, 2009.
DOI : 10.1016/j.tins.2009.01.003

J. G. Pelletier and J. C. Lacaille, Chapter 14 Long-term synaptic plasticity in hippocampal feedback inhibitory networks, Prog Brain Res, vol.169, pp.241-250, 2008.
DOI : 10.1016/S0079-6123(07)00014-3

K. F. Raab-graham, P. C. Haddick, Y. N. Jan, J. , and L. Y. , Activity- and mTOR-Dependent Suppression of Kv1.1 Channel mRNA Translation in Dendrites, Science, vol.314, issue.5796, pp.144-148, 2006.
DOI : 10.1126/science.1131693

S. T. Ross and I. Soltesz, Long-term plasticity in interneurons of the dentate gyrus, Proceedings of the National Academy of Sciences, vol.2, issue.5, pp.8874-8879, 2001.
DOI : 10.1097/00041552-199309000-00006

V. Sourdet, M. Russier, G. Daoudal, N. Ankri, and D. Debanne, Long-Term Enhancement of Neuronal Excitability and Temporal Fidelity Mediated by Metabotropic Glutamate Receptor Subtype 5, The Journal of Neuroscience, vol.23, issue.32, pp.10238-10248, 2003.
DOI : 10.1523/JNEUROSCI.23-32-10238.2003

Q. Q. Sun, Experience-Dependent Intrinsic Plasticity in Interneurons of Barrel Cortex Layer IV, Journal of Neurophysiology, vol.116, issue.5, pp.2955-2973, 2009.
DOI : 10.1038/nrn1248

G. G. Szabo, N. Holderith, A. I. Gulyas, T. F. Freund, and N. Hajos, Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus, European Journal of Neuroscience, vol.31, issue.12, pp.2234-2246, 2010.
DOI : 10.1111/j.1460-9568.2010.07292.x

X. J. Wang and G. Buzsaki, Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model, The Journal of Neuroscience, vol.16, issue.20, pp.6402-6413, 1996.
DOI : 10.1523/JNEUROSCI.16-20-06402.1996

Z. Wang, N. L. Xu, C. P. Wu, S. Duan, and M. M. Poo, Bidirectional Changes in Spatial Dendritic Integration Accompanying Long-Term Synaptic Modifications, Neuron, vol.37, issue.3, pp.463-472, 2003.
DOI : 10.1016/S0896-6273(02)01189-3

M. A. Whittington, R. D. Traub, J. , and J. G. , Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation, Nature, vol.373, issue.6515, pp.612-615, 1995.
DOI : 10.1038/373612a0

Y. Yazaki-sugiyama, S. Kang, H. Cateau, T. Fukai, and T. K. Hensch, Bidirectional plasticity in fast-spiking GABA circuits by visual experience, Nature, vol.15, issue.7270, pp.218-221, 2009.
DOI : 10.1038/nature08485

F. H. Yu, M. Mantegazza, R. E. Westenbroek, C. A. Robbins, F. Kalume et al., Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy, Nature Neuroscience, vol.16, issue.9, pp.1142-1149, 2006.
DOI : 10.1016/S0896-6273(00)80125-7

W. Zhang and D. J. Linden, The other side of the engram: experience-driven changes in neuronal intrinsic excitability, Nature Reviews Neuroscience, vol.55, issue.1, pp.885-900, 2003.
DOI : 10.1152/jn.1986.55.4.767

. Excitatory-inhibitory, Balance Is Mediated by Both Synaptic and Intrinsic Changes (A) Top, recording and stimulation configuration. Bottom, a long-lasting increase in disynaptic inhibition recorded in CA1 pyramidal neurons is induced by high frequency stimulation (HFS

. Upper, Middle graph, pooled data. Right, induction of LTP-IEPV-BC by brief application of the mGluR5 agonist CHPG (200?500 ?M, 2 min) Note the presence in both cases of two components. The transient component is due to a depolarization of the neuron but the sustained component is independent of any change in membrane potential, B) Induction of LTP-IEPV-BC by CHPG (500 ?M) in the presence of cadmium

E. Mechanisms and L. , Role of Kv1 Channels (A) Immunolabeling of parvalbumin (PV, left) and Kv1.1 subunit (right) in the stratum pyramidale of the CA1 region. Inset, identification of the axon initial segment of PV-positive neurons with ankyrin G labeling (AnkG, white arrow) Note the strong labeling of Kv1.1 channels in the cell body and in the axon of PV-positive neurons (see inset