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REVIEW Open Access

Multispectral texture characterization: application
to computer aided diagnosis on prostatic tissue
images
Riad Khelifi, Mouloud Adel and Salah Bourennane*

Abstract

Various approaches have been proposed in the literature for texture characterization of images. Some of them are
based on statistical properties, others on fractal measures and some more on multi-resolution analysis. Basically,
these approaches have been applied on mono-band images. However, most of them have been extended by
including the additional information between spectral bands to deal with multi-band texture images. In this article,
we investigate the problem of texture characterization for multi-band images. Therefore, we aim to add spectral
information to classical texture analysis methods that only treat gray-level spatial variations. To achieve this goal,
we propose a spatial and spectral gray level dependence method (SSGLDM) in order to extend the concept of
gray level co-occurrence matrix (GLCM) by assuming the presence of texture joint information between spectral
bands. Thus, we propose new multi-dimensional functions for estimating the second-order joint conditional
probability density of spectral vectors. Theses functions can be represented in structure form which can help us to
compute the occurrences while keeping the corresponding components of spectral vectors. In addition, new
texture features measurements related to (SSGLDM) which define the multi-spectral image properties are proposed.
Extensive experiments have been carried out on 624 textured multi-spectral images for use in prostate cancer
diagnosis and quantitative results showed the efficiency of this method compared to the GLCM. The results
indicate a significant improvement in terms of global accuracy rate. Thus, the proposed approach can provide
clinically useful information for discriminating pathological tissue from healthy tissue.

Keywords: texture characterization, multi-band texture images, spatial/spectral co-occurrence matrix, texture fea-
tures, prostate cancer, classification accuracy

1. Introduction
Recently, spectral imaging technology has become a
topic of growing interest in color-reproduction, remote-
sensing, medical imaging, and other systems. These
increased research efforts are likely to propagate into
other application areas such as computer vision and pat-
tern recognition. Usually, texture analysis is an efficient
measure to estimate the structural orientation, rough-
ness, smoothness or regularity differences of diverse
regions in an image scene.
The traditional popular tool used for texture-based

segmentation and classification is the gray level depen-
dence method (GLCM) [1,2], but some other techniques

have been proposed with success: description through
wavelet coefficient statistics [3], the Markov random
field [4] or Markov chain [5] models. Nevertheless, tex-
ture analysis remains a difficult problem when applied
to color [6], multi or hyperspectral images; where image
pixel takes its values in a multidimensional space. For
this purpose, a great deal of work has been done for
modeling the multispectral and hyperspectral texture
analysis [7-12].
The main idea of extracting texture from hyperspec-

tral images is the use of combined spectral and spatial
information. Numerous approaches have been con-
ducted on the use of Gabor filters [13], co-occurrence
matrices [14-19], mathematical morphology [20-22].
In [23], the authors used the potential of the spectral/

textural approach to improve the classification accuracy
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of intra-urban land cover types; Claussi [24] studied the
effect of gray quantization on the ability of co-occur-
rence probability statistics; Kiema [25] examined the
gray-level co-occurrence based texture image fused to
thematic mapper (TM) imagery to expand the object
feature base to include both spectral and spatial features;
while Bau and Healey [26] used a bank of rotation scale
invariant Gabor feature vectors to represent the spec-
tral/spatial properties of a region.
Besides, color opponent features were first introduced

in color texture characterization with fairly good perfor-
mance [27] and later extended to deal with multi-band
texture images [28]. Other methods combine color and
texture information for the segmentation of color
images [29]. Moreover, several researches studied the
spatial interaction within each channel and interaction
between spectral channels, applying gray level texture
techniques to each channel independently [30], or using
3D colour histograms as a way to combine information
from all colour channels [31].
Recently, it has been shown that the concept of spatial

co-occurrence matrix could be generalized by assuming
texture joint information between spectral bands [17,32].
However, the main problem of texture analysis of

multi-band images is related to the high dimension of
the data and its high correlation.
Driven by classification or discrimination accuracy, one

would expect that, as the number of multi or hyperspectral
bands increases, the accuracy of classification should also
increase. Nonetheless, this is not the case in a model-
based analysis [33-35]. Redundancy in data can cause con-
vergence instability of models. Furthermore, variations due
to noise in redundant data propagate through a classifica-
tion or discrimination model. Thus, processing a large
number of multi or hyperspectral bands can result in
higher classification inaccuracy than processing a subset of
relevant bands without redundancy [34,35].
One way of overcoming this problem is to adopt a

proper selection band method before applying classifica-
tion task. The reason is that, in a selection band proce-
dure, the amount of data is reduced into a lower
dimensional subspace without practically losing relevant
information [36]. In addition, computational require-
ments for processing large hyperspectral data sets might
be prohibitive and a method for selecting a data subset
is therefore sought [33].
Several approaches have been investigated by looking

into how to remove information re-dundancy resulting
from highly correlated bands [33,37-40]. Most of the
methods usually involve two separate tasks: (a) selecting
the bands that can indicate the particular material well,
feature bands selection; and (b) removing the feature
bands contributing redundant information, redundancy
reduction [41]. Recently, Information theory has also

been used in feature bands selection [42,43], it consists
of analyzing the amount of information in a subset of
features (bands), measuring the degree of independence
between image bands as a relevance criterion.
In this article, we investigate the problem of the analy-

sis of multispectral image textures allowing a joint spec-
tral and spatial analysis of texture. Therefore, we aim to
add spectral information to classical texture analysis
methods that only treat gray-level spatial variations. We
try to apply the proposed method on prostate cancer
textured multispectral images. These images have been
chosen to reflect different grades of malignancy in pro-
static tissues, and they correspond to different structural
patterns as well as apparent textures.
The remainder of this article is organized as follows:

Section 2 describes a new method for multi and hyper-
spectral texture analysis, based on joint spatial and spec-
tral information; while Section 3 is concerned with
some comparative results. Finally, Section 4 gives a con-
clusion of the article.

2. Spatial and spectral gray level dependence
method (SSGLDM)
2.1. N-mode flattening matrix of a tensor
A multi-band image can be represented as a 3-D data
array also called third order tensor X ε R

I1×I2×I3, where
the three entries are related to pixel localization and
spectral band, and each element of X could be arranged
as xi1i2 i3, i1 = 1, ..., I1, i2 = 1, ..., I2, i3 = 1, ..., I3; ℝ is the
real manifold.
A tensor can be transformed into a n-mode matrix.

The n-mode flattened matrix Xn of tensor X ε R
I1×I2×I3

is a In × Mn matrix where:
Mn = Ip × Iq, with p, q ≠ n.
By definition, Xn is generated by the column vectors

of the n-mode flattened matrix. columns are In dimen-
sional vectors obtained from X by varying the index in
and keeping the other indices fixed [44]. These vectors
are called “n-mode vectors”. The three n-mode flatten-
ing of a third-order tensor are shown in Figure 1.

2.2. SSGLDM algorithm
The idea of the SSGLDM is based on the estimation of
the second-order joint conditional probability density
multi-dimensional functions P (V, VΔ|d, θ).
Each P (V, VΔ|d, θ) is the probability that two spectral

vectors V and VΔ with components (i1, ..., ik, ..., in), and
(j1, ..., jl, ..., jn) respectively, occur for a given distance d
and direction θ (see Figure 2), where n is the number of
spectral bands, and (i(k), j(l)) ε [1, Ng]

2, Ng is the number
of gray levels.
In the whole article, we consider multi-spectral data as

a third-order tensor denoted by X , in which the entries
are accessed via three index.
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Unlike the spatial gray level dependence method in
which the estimated second-order joint conditional den-
sity functions can be described in a matrix, we propose
to represent P (V, VΔ|d, θ) in a structure form of an
array Ioccu which is the vector of occurrences and a
matrix MV,V� which is the matrix of V and VΔ compo-
nents. Each row in the matrix MV,V� corresponds to V
and VΔ components. The use of this structure can help
us to compute the occurrences while keeping the corre-
sponding components vectors of V and VΔ. For example
if we take the first value of Ioccu (i.e Ioccu(1)), the corre-
sponding components vectors of V and VΔ are in the
first row of MV,V� (see Figure 3), so

Ioccu(1|d, θ) = P(V(1), V(1)
� |d, θ) where

V(1) = MV,V�
(1, 1 : n) and V(1)

� = MV,V�
(1, n + 1 : 2 × n).

(1: n): designs columns 1 to n.
In order to compute the matrix MV,V�, we define two

sub-tensors A, B extracted from the tensor data X for
each direction θ as shown in Figure 4. Using the 3-
mode flattening matrix of A, B, we obtain respectively

A3, B3. Let T denotes the matrix that horizontally con-
catenates At

3 and Bt
3, and vertically concatenates Bt

3 and
At
3, whereA

t
3, B

t
3 denote the transposed matrices of A3,

B3 respectively. T can be represented as follows:

T =
(
At
3 Bt

3
Bt
3 At

3

)
(1)

The use of this procedure yields us to calculate the
spatial and spectral gray level dependence for both θ
and (θ + π).
Finally, the matrix MV,V� is obtained by keeping only

the rows of T with no repetitions, however, the number
of repetitions for each row is represented in an array of
occurrences called Ioccu. At the end of the process, Ioccu
is normalized with respect to the size of MV,V�, so that
each component represents the probability of occur-
rence of a given combination (V, VΔ). The spatial and
spectral gray level dependence algorithm can be given as
follows:
STEP 1: For a given distance d and angle θ, extract

the two sub-tensors A and B from the tensor data X .
STEP 2: Compute the 3-mode flattening matrices A3,

B3.
STEP 3: Build the matrix T.
STEP 4: Compute MV,V� by keeping only the rows T

with no repetitions.
STEP 5: Compute Ioccu.

2.3. Proposed generalized textures features related to
SSGLDM
Haralick texture features comprise 14 features as sum-
marized in [1]. However, the most used in literature are
energy, entropy, inertia, local homogeneity and correla-
tion. In this article we propose seven new generalized
texture features.

Suppose that V(k) = (i(k)1 , i(k)2 , . . . , i(k)n ), and

V(k)
� = (j(k)1 , j(k)2 , . . . , j(k)n ), where 1 ≤ k ≤ m, and

1 ≤ m ≤ N2n
g is the length of the vector of occurrences,

Ng is the number of gray levels and n is the number of
bands.

Figure 1 Flattening matrices of a third order tensor [52].

Figure 2 3D representation of the two vectors V and VΔ for a
given distance d = 1 and θ = 45°.

Figure 3 Structure form representation of P (V, VΔ|d, θ ).
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For convenience, P(V(k), V(k)
� |d, θ) will be written as

P(V(k), V(k)
� )in the following equations. Energy:

H =
k=m∑
k=1

P2(V(k), V(k)
� ) (2)

This descriptor is also known as angular second
moment or uniformity. In our case, it measures the spa-
tial/spectral image homogeneity.

Entropy:

E = −
k=m∑
k=1

P(V(k), V(k)
� )log(P(V(k), V(k)

� )) (3)

The entropy is the counterpart measure of energy. It
measures randomness and is smaller for a smooth
image than for a coarse image.

(a) (b)

(c) (d)

Figure 4 The two sub-tensors A, Bextracted from the tensor data X for each direction θ. (a) 0°, (b) 45°, (c) 90°, (d) 135°, d = 1.
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Inertia:
⎧⎪⎪⎨
⎪⎪⎩
I =

k=m∑
k=1

[V(k) − V(k)
� ]

2
P(V(k), V(k)

� )

where :
[
V(k) − V(k)

�

]2
=

[
(i(k)1 − j(k)1 )

2
+ (i(k)2 − j(k)2 )

2
+ · · · + (i(k)n − j(k)n )

2
] (4)

This descriptor is also known as contrast or difference
moment. It is a measure of image intensity contrast or
the spatial/spectral variations present in an image to
show the texture fineness.
The inertia value is high when similar spectral vectors

are adjacent to each other in the input image and pro-
vides a measure of coarseness (similarity).
Local homogeneity:

In =
k=m∑
k=1

1

1 +
[
V(k) − V(k)

�

]2 P(V(k), V(k)
� ) (5)

The local homogeneity or inverse difference moment
is a counterpart measure to the contrast descriptor.
Asymmetry:

I =
k=m∑
k=1

[(V(k) − Vx) + (V(k)
� − V�y)]

3
P(V(k), V(k)

� ) (6)

where:

(V(k) − Vx) =

√
(i(k)1 − x1)

2
+ · · · (i(k)n − xn)

2

(V(k)
� − V�y) =

√
(j(k)1 − y1)

2
+ · · · (j(k)n − yn)

2

Vx = (x1, x2, . . . , xn) =
k=m∑
k=1

V(k)P(V(k), V(k)
� )

V�y = (y1, y2, ..., yn) =
k=m∑
k=1

V(k)
� P(V(k), V(k)

� )

This descriptor measures the distribution of spectral
vectors values around the vectors average using third
order statistics.
Proeminence:

I =
k=m∑
k=1

[(V(k) − Vx) + (V(k)
� − V�y)]

4
P(V(k), V(k)

� ) (7)

This descriptor measures the distribution of spectral
vectors values around the vectors average using fourth
order statistics.
Correlation:

I =
1

σiσj

k=m∑
k=1

(V(k) − Vx)(V
(k)
� − V�y)P(V(k), V(k)

� ) (8)

where:

σ 2
i =

k=m∑
k=1

(V(k) − Vx)
2
P(V(k), V(k)

� )

σ 2
j =

k=m∑
k=1

(V(k)
� − V�y)

2
P(V(k), V(k)

� )

The correlation descriptor measures the linear depen-
dency of spectral vectors in the co-occurrence matrix.
In practice, as the number of bands increases, the

joint probability P(V(k), V(k)
� ) decreases. Consequently,

the values of P(V(k), V(k)
� )become nonsignificant which

implies a poor overall classification [17,32].
To overcome this issue, we suggest to apply the pro-

posed SSGLDM on a subset of bands in the multi-spec-
tral image, instead of processing the whole set of bands.
The subset of bands can be chosen to remove informa-
tion redundancy resulting from highly correlated bands.

2.4. Band selection by minimization of dependent
information
In [43], the extraction of selected subsets of spectral
image bands can be obtained by means of a criterion
based on the minimization of the dependent information
(MDI), which consists of a relation between the joint
entropy and the union of the conditional entropies of
the considered set of image bands. This criterion could
be defined by the following expression:

�DI = H(A1, . . . , An) −
n∑

i1=1

H(Ai1 |Ai2 , . . . , Ain) (9)

Where Ai1 is a random variable representing the image
band i1. Ai2 , ...,Ain are the complementary variables of
Ai1 ;H(A1, ...,An) is the joint entropy, which represents
the total amount of joint information of set of variables
A1, ..., An; and H(Ai1 |Ai2 , . . . ,Ain) is the conditional
entropy that represents the amount of independent
information in image band Ai1 having measured the rest
image bands Ai2 , ...,Ain.
This technique behaves as an unsupervised feature

selection criterion, providing very satisfactory results
with respect to classification accuracy when using the
selected bands, even outperforming the other supervised
methods used in the comparison in most situations [43].
These performances justify our choice of using MDI
[43] for selecting the best relevant bands in the second
part of our experiments.

3. Experimental results
The first part of this section is concerned with multi-
spectral texture characterization. For this purpose, an
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extensive experiments are carried out on many multi-
spectral images for use in prostate cancer diagnosis.
Furthermore, the results of proposed method
(SSLGMD) are compared with GLCM, followed by per-
formance comparative study and discussion. The second
part deals with the curse-of-dimensionality problem.
Thus, we extract the best relevant bands of multispectral
prostate cancer using MDI technique proposed by
Sotoca et al. [43]. Thereafter, we provide some experi-
mental results, in order, to see the impact of the
selected bands using MDI criterion on the classification
accuracy performance using proposed method and
GLCM respectively.

3.1. Data set
Over the last decade, multi-spectral imagery in pros-
tate cancer has become a very useful tool for analyzing
and diagnosing pathologies. The prostate cancer is the
second most common cancer in men after the skin
cancer, and it is also the second in the list of causes
for cancer death after the lung cancer. However, the
most known method for prostate cancer diagnosis is
the prostate-specific antigen (PSA) blood test. In the
case of a positive diagnosis, the urologist will often
advise a needle biopsy, in which a tiny piece of a tissue
is taken from the prostate for analysis [45]. From the
analysis, different grades of malignancy correspond to
different structural patterns as well as to apparent tex-
tures. After the analysis, an experienced pathologist
selects the images to reflect the different patterns in
prostatic tissues, four major groups usually should be
identified (see Figure 5).

● Stroma: STR (normal muscular tissue)
● Benign prostatic hyperplasia: BPH (a benign
condition)
● Prostatic intraepithelial neoplasia: PIN (a precursor
state for cancer).
● Prostatic carcinoma: PCa (abnormal tissue devel-
opment corresponding to cancer).

The data set consists of 624 textured multi-spectral
images, of 128 by 128, with each image taken with 16
spectral channels (from 500 to 650 nm) with a 5 nm
step [45]. The images were captured using a classical
microscope and CCD camera. A liquid crystal tunable
filter (LCTF) was inserted in the the optical path
between the light source and the chilled CCD camera.
The LCTF has a bandwidth accuracy of 5 nm.
The captured images have been chosen to reflect differ-

ent grades of malignancy in prostatic tissues and they are
labeled into four classes: 176 cases of cancer (Pca), 160
cases of BPH, 144 cases of PIN and 144 cases of Stroma
(STR).a The samples were routinely viewed at prostatic
section seen at low power (40x objective magnification)
by two highly experimented independent pathologists.
The pathologist initially views slides at low power,
thereby enabling the location of potentially abnormal
regions. Subsequent analysis of these regions at high
power enables the histological grading of these areas.
The X-Y resolution depends on the magnification cho-

sen, which is usually high for visualization purposes. In
this study, the images of 128 by 128 pixels were cap-
tured at an X-Y resolution of 0.12 µ/pixel.
Usually, when a biopsy is submitted for analysis, it is

very rare that the pathologist finds that the sample is per-
fectly normal. There must be at least some benign condi-
tion that would explain the high levels of PSA that
usually justify needle biopsy. So the main issue is to iden-
tify benign from malignant and premalignant conditions.
For this purpose, Figure 6 summarizes the different

steps used in this article for classification process. The
proposed methodology is very important task in prostate
cancer diagnosis and could be viewed as a computer-
aided system to automatically classify pathological pros-
tate images, since each image can be classified into an
appropriate class of prostatic tissue.

3.2. Features extraction (Step 1)
The goal of this step of analysis is to characterize the
four different groups of multi-spectral images by

(a) (b) (c) (d)
Figure 5 Images showing representative samples of the four classes. (a) Stroma, (b) BPH, (c) PIN, (d) PCa.
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extracting features in order to make classification
possible.
All generalized and traditional features mentioned in

Sections 3.4 and 3.5 have been used for our experi-
ments, and the best performances have been achieved
by choosing (d = 1) and the four principal directions (θ
= 0°, θ = 45°, θ = 90°, θ = 135°).
We note that, the problem of spatial selection rela-

tionships (i.e d and θ) for defining co-occurrence
matrices is addressed in [46]. These matrices are maxi-
mally reflecting the structure of the underlying texture.

3.3. Features selection for prediction procedure (Step 2)
Feature selection technique is applied to reduce the
number of features before applying the classification
task. Irrelevant features may have negative effects on a
prediction procedure. Moreover, the computational
complexity of a classification algorithm may suffer from
the curse of dimensionality caused by several features.
Features can be selected in many different ways. One

scheme is to select features that correlate strongest to
the classification variable.
This has been called maximum-relevance selection.

Many heuristic algorithms can be used, such as the
sequential forward, backward, or floating selections [42].
On the other hand, features can be selected to be

mutually far away from each other, while they still have
high correlation to the classification variable. This
scheme, termed as minimum-redundancy-maximum-
relevance selection [42], has been found to be more
powerful than the maximum relevance selection. This
justifies the use of this technique in our experiments.
We note that, this technique is not applied when the

number of feature is small.

3.4. Classification process (Step 3)
A classification process usually involves training and
testing data which consist of some data instances. Each
instance in the training set contains one “target value”
(class labels) and several “attributes” (features).

Figure 6 Classification procedure.
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3.4.1. Using SVM for classification
In [47], several neural networks were compared to the
SVM for the classification of hyper-spectral data. The
robustness of SVMs was demonstrated and the best
results were obtained using a non-linear SVM. In addi-
tion, [47] studied Radial Basis Functions (RBF) classifiers
and SVM and they noted the favorable behavior of the
SVM, from both a theoretical and a practical point of
view (see Appendix).
Visually, the images illustrated in Figure 5 are very

similar, so the use of SVM for classification issue could
be suitable for our applications.

3.5. Results and discussion
The assessment of the classification performance was
made using 3-fold cross-validation. Thus, data were
randomly splited into 3-sets of a roughly equal size.
Splitting was carried out such that the proportion of
samples per class was roughly equal across the sets.
Each run of the 3-fold cross-validation algorithm con-
sisted of a classifier designed on two data subsets (train-
ing) while testing was performed on the remaining
subset; this is repeated three times. The SVM optimiza-
tion was implemented using LIBSVM library through its
Matlab interface [48]. The penalty term C of Gaussian
kernel, was fixed to 200 and s2 was selected by using a
fivefold cross validation [48]. So that, fivefold cross vali-
dation was applied on training data in order to estimate
s2 which gives the highest classification accuracy rate.
Firstly, we compared the performance of SSGLDM

with GLCM by the overall classification rate as a criter-
ion of the comparison, with reference to a set of images
manually classified by experts. Like in the GLCM, in
which the co-occurrence matrix is computed for each
band, we can apply SSGLDM for each subset of bands
in the image. Let S be a subset of a bands in the image
(a ≤ Nb) where Nb is the number of image bands. For
example, if S = (Bl, Bl+1) is a subset of two bands; the
SSGLDM can be applied Nb − 1 times in the image by
varying l from 1 to Nb − 1. Thus, GLCM can be seen as
a special case of SSGLDM when S contains only one
band.
The number of features is computed for each band in

the GLCM, so the total number of features is 7 × (4
directions) × 16 bands = 448. However in the case of
SSGLDM, the number of features depends on the choice
of subset of bands (S). For example, if S contains two
bands, the number of features is 7 × (4 directions) ×
(Nb − 1) bands = 420, where Nb = 16. The minimum
redundancy-maximum relevance selection algorithm
[42] was used to ensure good classification accuracy by
selecting 40 better features from all features generated
by SSGLDM.

Table 1 shows the classification results obtained by
using SSGLDM, for different subsets of bands (S) for
both 32 and 64 gray levels quantification.
It can be clearly observed from Table 1 that the

SSGLDM yields better results than the GLCM when S is
less than five bands. Best results are obtained with S = 3
bands, for both 32 and 64 gray levels. However, with 16
bands we obtained a classification accuracy rate around
93%. This may derive from the high correlation of the
data. Moreover, as the set of bands increases, the joint
probability P (V, VΔ|d, θ) decreases. Consequently, the
values of P (V, VΔ|d, θ) become nonsignificant which
implies a poor overall classification.
To illustrate the classification of different classes of

prostate cancer, we show the confusion matrices
obtained by using SSGLDM for different choices of S.
Tables 2a,b depict the results using GLCM (S = 1 band)
where Tables 2c,d give the corresponding results using
SSGLDM for (S = 16 bands). As can be seen from these
tables, the use of SSGLDM with (S = 16) yields worst
results in terms of global accuracy rate. However, Tables
2e,f show the achieved improvements when using
SSGLDM with (S = 3 bands). Note that in all the cases,
BPH and Stroma classes present the highest error rate in
terms of classification due to the similarities between two
classes; however the use of SSGLDM with (S = 3 bands)
reduces significantly the error rate in these classes.
On the other hand, tests of the computation time

were performed for the both SSGLDM and GLCM. For
this purpose, we used a PC Intel® Core(TM) 2 CPU, 2.66
GHz and 3.58 GB Ram. The two methods were imple-
mented using Matlab 7.1. Times are given for the com-
putation of the co-occurrence matrices and all the
features of each method (SSGLDM and GLCM), on
images 128 × 128 mentioned in Section 3.1. As shown
in on Table 3 The execution time using SSGLDM with
(S = 2) is almost the same as GLCM.
Note also that the time keeps growing, when increas-

ing the set of bands during the process. However, it
decreases for (S = 16), because the SSGLDM was
applied just one time for the whole set of spectral
bands. Thus, one can conclude that the use SSGLDM
with (S = 2) is a quit good compromise between classifi-
cation results and computation.

Table 1 Classification results obtained by using the
SSGLDM

Subset of bands (S) 1(GLCM) 2 3 4 5 16

Overall classification (%)
(32 gray levels)

94.87 97.44 97.76 97.11 96.31 93.91

Overall classification (%)
(64 gray levels)

95.51 97.12 97.44 96.96 96.79 93.27
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3.5.1. Receiver operating characteristic (ROC)
In order to plot ROC curves, the classifier should be
tested using different parameters re-sulting from differ-
ent values for false alarm (false positive rate FPR) and
sensitivity (true positive rate TPR) rates.

Let πi be the prior probabilities in each class i. In the
case of uniform prior probabilities, πi can be written as:
∀i πi = 1

N, where: N is the number of classes.
Let us suppose a two-class prediction problem (binary

classification), in which the outcomes are labeled either
as positive (p) or negative (n) class. This is achieved by
considering that BPH as the negative diagnosis while
PIN and PCa together form the positive diagnosis out-
come (the classification of Stroma is relatively simple
because of its homogeneous nature at low resolution)
[49,50].
Since there are two classes, prior probabilities are

linked by the relation:

πpositive = 1 − πnegative (10)

ROC curves could be plotted by varying the positive
values πpositive.
Figure 7 shows a comparative study of the ROC

curves using GLCM and SSGLDM respectively, for both
32 and 64 gray levels. Dark, blue and red curves indicate
the ROC curves of classified image using SSGLDM (S =
3 bands), GLCM and SSGLDM (S = 16 bands) respec-
tively. These results indicate that for all possible values
of prior probability πpositive the SSGLDM features with
(S = 3) perform better when compared with that derived
from GLCM for both 32 and 64 gray levels. The results
demonstrate also that our new proposed technique
improves ability to distinguish cancer prostate tissues
from healthy ones.
However, one can note, that the major issue arise

from our proposed method is related to the high dimen-
sion of the data and its high correlation. This fact is
clearly seen from Table 1 and 2 where classification
accuracy is degraded while using SSGLDM with 16
bands. Thus, the main question to be solved is: does the
band selection procedure improve the overall classifica-
tion rate when using SSGLDM? How would one obtain
the optimal number that maximizes classification accu-
racy and minimize computational requirements?
In the remainder of this section, we show the influ-

ence of selected band method using MDI criterion (Sec-
tion 2.4) on the overall classification rate by applying
the SSGLDM.

3.6. SSGLDM using band selection
In order to exploit inter-band correlation for reducing
the multi-spectral band representation, the unsupervised
band selection technique by Sotoca et al. [43] has been
used to extract the best relevant bands of multispectral
prostate cancer database.
All classification rates shown in this section were

computed by using 3-fold cross-validation, such as
described before.

Table 2 Confusion matrices obtained by using (a) GLCM
(32 gray levels), (b) GLCM (64 gray level), (c) SSGLDM (S
= 16 bands, 32 gray level), (d) SSGLDM (S = 16 bands, 64
gray level), (e) SSGLDM (S = 3 bands, 32 gray levels), (f)
SSGLDM (S = 3 bands, 64 gray levels)

Classified as: BPH PCa PIN Stroma Error (%)

(a)

BPH 135 1 24 0 15.62

Pca 0 175 0 1 0.57

PIN 2 0 141 1 2.08

Stroma 0 0 3 141 2.08

Overall 5.13

(b)

BPH 138 0 22 0 13.75

Pca 0 176 0 0 0

PIN 3 0 141 0 2.08

Stroma 0 0 3 141 2.08

Overall 4.49

(c)

BPH 149 0 11 0 6.88

Pca 0 173 0 3 1.70

PIN 0 0 136 8 5.56

Stroma 0 11 5 128 11.11

Overall 6.09

(d)

BPH 145 0 15 0 9.38

Pca 0 174 0 2 1.14

PIN 0 0 135 9 6.25

Stroma 5 4 7 128 11.11

Overall 6.73

(e)

BPH 147 0 13 0 8.13

Pca 0 175 0 1 0.57

PIN 0 0 144 0 0

Stroma 0 0 0 144 0

Overall 2.24

(f)

BPH 147 0 13 0 7.5

Pca 0 175 0 1 0.57

PIN 0 0 143 1 0.69

Stroma 0 0 1 143 0.69

Overall 2.56

Table 3 Consuming time

Subset of bands 1 (GLCM) 2 3 4 5 16

Time per image (sec) 0.63 0.67 1.3 1.62 3.13 1.56
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Note that the same classification procedure used in
Section 5.4 was applied for each data cube constructed
by the selected bands. However, in the case of SSGLDM
the features selection technique [42] was not used
because of the small number of features (Figure 6).
To see the impact of the selected bands using MDI

criterion on the classification accuracy performance, we
tested the SSGLDM with a variable number of selected
bands of multispectral images. Therefore, the plot of
Figure 8 shows the result when using 2, 3, 4, 5, 6 and
16 selected bands as input data. A clear improvement of
the classification accuracy can be observed by using five
selected bands. However, the SSGLDM yields worst
results, when more than six selected bands are used.
Thus, processing a large number of multispectral bands
can result in higher classification inaccuracy than pro-
cessing a subset of relevant bands without redundancy.
On the other hand, the classical GLCM provides lower

classification accuracy than SSGLDM. However, when
more bands selected are used, GLCM performs better.
This is mainly due to the use of minimum redundancy-
maximum-relevance selection [42] that reduces the
number of features and ensure a good classification
accuracy.

To gain an insight into the classification of different
classes of prostate cancer, the confusion matrices of
both SSGLDM and GLCM using five selected bands are
also given in Table 4. As can be seen from this table,
the use of band selection procedure before applying
SSGLDM reduces significantly the error rate in classes
and insures a good discrimination power between differ-
ent types of tissues.
Figure 9 illustrates the ROC curves obtained with the

two methods GLCM and SSGLDM using five selected
bands as input data. This clearly demonstrates that our
new proposed SSGLDM results in an improved ability
to distinguish cancer prostate tissues from healthy ones.
Finally, Table 5 summarizes the processing time for

both GLCM and SSGLDM (implemented using Matlab
7.1) versus selected bands. This experiment is conducted
on an Intel® Core(TM) 2 CPU, 2.66 GHz and 3.58 GB

(a)

(b)

Figure 7 The comparative ROC curves. (a) 32 gray levels (b) 64
gray levels.

(a)

(b)

Figure 8 Behavior of the overall classification accuracy versus
the selected bands. (a) 32 gray levels (b) 64 gray levels.
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Ram. As mentioned before, times are given for the com-
putation of co-occurrence matrices and all features for
each method.
It’s clear from the table that the use of band selection

technique reduces significantly the time computation.
On the other hand, comparing the results of two meth-
ods, SSGLDM ran much faster than the GLCM mainly
because SSGLDM features are extracted from the whole
data cube of selected bands, unlike the GLDM features
which are computed from each selected band.

4. Conclusion
This article describes a new method to generalize the
concept of spatial gray level dependence method by
assuming the presence of texture joint information
between spectral bands. Two ways have been suggested
to implement the proposed spatial and spectral gray
level dependence method (SSGLDM): (a) applying
SSGLDM for each subset of bands in the multi-spectral
image; and (b) making a connection between band
selection and SSGLDM by using MDI criterion before
applying SSGLDM. Extensive experiments have been

carried out on many multi-spectral images for use in
prostate cancer diagnosis and quantitative results
showed the efficiency of this method compared to the
Gray GLCM. SSGLDM has also pro-vided better perfor-
mances in terms of classification accuracy and computa-
tional complexity. Finally, due to the aspect of this area
of research, many issues could be suggested. Open pro-
blems that can be investigated in the future include the
following:
(1) The new texture characterization method

described in this article focuses on second order statis-
tics. Therefore, the way forward could be to investigate
alternative methods using higher-order statistics.
(2) In this work, the most time consuming task was,

by far, the computation of the generalized co-occurrence
matrix, which mainly depends on spectral vector-pairs
distances and a large numbers of spectral bands. The

Table 4 Confusion matrices obtained by using (a) GLCM
(5 selected bands, 32 gray levels), (b) SSGLDM (5
selected bands, 32 gray levels), (c) GLCM (5 selected
bands, 64 gray levels), (d) SSGLDM (5 selected bands, 64
gray levels)

Classified as: BPH PCa PIN Stroma Error (%)

(a)

BPH 147 0 13 0 8.13

Pca 0 174 2 0 1.14

PIN 2 12 129 1 10.42

Stroma 9 0 1 134 6.94

Overall 6.41

(b)

BPH 148 0 12 0 7.5

Pca 0 174 2 0 1.14

PIN 2 11 130 1 9.72

Stroma 1 0 1 142 1.39

Overall 4.81

(c)

BPH 141 0 15 4 11.88

Pca 0 175 1 0 0.57

PIN 0 13 130 1 9.72

Stroma 17 0 1 126 12.5

Overall 8.33

(d)

BPH 149 0 11 0 6.88

Pca 0 176 0 0 0

PIN 2 10 131 1 9.03

Stroma 0 0 1 143 0.69

Overall 4.01

(a)

(b)

Figure 9 The comparative ROC curves using five selected
bands as input data. (a) 32 gray levels (b) 64 gray levels.

Table 5 Computation time

Number of selected bands 2 3 4 5 6

GLCM (Time per image (sec)) 0.08 0.12 0.16 0.2 0.24

SSGLDM (Time per image (sec)) 0.05 0.09 0.12 0.17 0.21
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nature of the calculation makes it suitable for parallel
processing because the same calculations are performed
on successive image blocks.
(3) The generalized multi-band texture method is pro-

posed in this article to solve the characterization of
multi-band texture images problem. Medical data sets
that use multi-spectral data have been used to evaluate
our proposed algorithm. In future, to apply our pro-
posed algorithms to other applications such as hyper-
spectral satellite imagery or skin cancer detection.

Endnote
aThe data set used in this study were provided from
Pathology department team at Queen’s university of Bel-
fast under the direction of Prof. Hamilton.

Appendix
Support vector machines (SVM)
The aim of SVM is to produce a model (based on the
training data) that predicts target value of data instances
in the testing set which are given only by the attributes.
Given a labeled training data set {(x1, y1), ..., (xn, yn)},
where xi Î ℝn and yi Î {−1, 1}, the SVM [47,51] require
the solution of the following optimization problem:

min
w,ξi,b

{
1
2

‖w‖2 + C
∑
i

ξi

}
(:1)

constrained to:{
yi(〈φ(xi), w〉 + b) ≥ 1 − ξi ∀i = 1, . . . , n
ξi ≥ 0 ∀i = 1, . . . , n

(:2)

where 〈.,.〉: is the inner product.
In the case of a nonlinear classification of samples, the

training vectors xi are mapped into a higher (maybe infi-
nite) dimensional space by the function �, w is the vec-
tor of hyperplane coefficients (orientation), b is a bias
term. The regularization parameter C controls the gen-
eralization capabilities of the classifier and it must be
selected by the user, and ξi are positive slack variables
enabling to deal with permitted errors. The decision
function is found by solving the convex optimization
problem

max
αi

⎧⎨
⎩

∑
i

αi − 1
2

∑
i,j

αiαjyiyj〈φ(xi),φ(xj)〉
⎫⎬
⎭ (:3)

subject to:{
0 ≤ αi ≤ C∑
i

αiyi = 0 i = 1, ...,n (:4)

where ai are the Lagrange coefficients. It is worth not-
ing that all � mappings used in the SVM learning occur
in the forme of inner product. This allows us to define
the classical Gaussian kernel Ks given by this formula:

kσ (xi, xj) = 〈φ(xi), φ(xj)〉

=

(
exp

(
−

∥∥xi − xj
∥∥2

2σ 2

))
(:5)

where the norm is the Euclidean norm and s Î ℝ+

tunes the flexibility of the kernel. The classification of a
sample × is achieved by looking to which side of the
hyperplane it belongs

f (x) = sgn

(
n∑
i=1

yiαikσ (xi, x) + b

)
(:6)

Where b can be used for computing ai.
The SVMs are mainly a nonparametric method, yet

some parameters need to be tuned before the optimiza-
tion. In the case of Gaussian kernel, there are two para-
meters: C, which is the penalty term, and s, which is
the width of the exponential.
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