O. Østergaard, C. Nielsen, L. Iversen, S. Jacobsen, J. Tanassi et al., Quantitative Proteome Profiling of Normal Human Circulating Microparticles, Journal of Proteome Research, vol.11, issue.4, pp.2154-2163, 2012.
DOI : 10.1021/pr200901p

D. Jeppesen, A. Nawrocki, S. Jensen, K. Thorsen, B. Whitehead et al., Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors, PROTEOMICS, vol.2, issue.6, pp.699-712, 2014.
DOI : 10.1038/ncomms1285

C. Théry, L. Zitvogel, and S. Amigorena, Exosomes: composition, biogenesis and function, Nature Reviews Immunology, vol.267, issue.8, pp.569-579, 2002.
DOI : 10.1046/j.1432-1327.2000.01036.x

L. Urbanelli, S. Buratta, K. Sagini, G. Ferrara, M. Lanni et al., Exosome-based strategies for Diagnosis and Therapy, Recent Patents on CNS Drug Discovery, vol.10, issue.1, pp.10-27, 2015.
DOI : 10.2174/1574889810666150702124059

R. Simpson, S. Jensen, and J. Lim, Proteomic profiling of exosomes: Current perspectives, PROTEOMICS, vol.29, issue.19, pp.4083-4099, 2008.
DOI : 10.4049/jimmunol.179.3.1969

D. Choi, D. Kim, Y. Kim, and Y. Gho, Proteomics, transcriptomics and lipidomics of exosomes and ectosomes, PROTEOMICS, vol.4, issue.10-11, pp.1554-1571, 2013.
DOI : 10.1038/nprot.2008.211

M. Larson, J. Woodliff, C. Hillery, T. Kearl, and M. Zhao, Phosphatidylethanolamine is externalized at the surface of microparticles, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1821, issue.12, pp.1501-1507, 2012.
DOI : 10.1016/j.bbalip.2012.08.017

S. Hou, D. Grillo, C. Williams, J. Wasserstrom, I. Szleifer et al., Membrane phospholipid redistribution in cancer micro-particles and implications in the recruitment of cationic protein factors, Journal of Extracellular Vesicles, vol.3, issue.1, 2014.
DOI : 10.1101/cshperspect.a004671

D. Connor, T. Exner, D. Ma, and J. Joseph, The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipiddependent procoagulant activity and demonstrate greater expression of glycoprotein Ib, Thromb Haemost, vol.103, pp.1044-1052, 2010.

H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. Lee et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nature Cell Biology, vol.175, issue.6, pp.654-659, 2007.
DOI : 10.1002/pmic.200400876

J. Ratajczak, M. Wysoczynski, F. Hayek, A. Janowska-wieczorek, and M. Ratajczak, Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication, Leukemia, vol.46, issue.Suppl 1, pp.1487-1495, 2006.
DOI : 10.1111/j.1537-2995.2006.00737.x

D. Pegtel, K. Cosmopoulos, D. Thorley-lawson, M. Van-eijndhoven, E. Hopmans et al., Functional delivery of viral miRNAs via exosomes, Proceedings of the National Academy of Sciences, vol.23, issue.16, pp.6328-6333, 2010.
DOI : 10.1101/gad.1789609

D. Koppers-lalic, M. Hogenboom, J. Middeldorp, and D. Pegtel, Virus-modified exosomes for targeted RNA delivery; A new approach in nanomedicine, Advanced Drug Delivery Reviews, vol.65, issue.3, pp.348-356, 2013.
DOI : 10.1016/j.addr.2012.07.006

M. Guescini, S. Genedani, V. Stocchi, and L. Agnati, Astrocytes and Glioblastoma cells release exosomes carrying mtDNA, Journal of Neural Transmission, vol.140, issue.1, pp.1-4, 2010.
DOI : 10.1007/s00702-009-0288-8

I. Nazarenko, A. Rupp, and P. Altevogt, Exosomes as a Potential Tool for a Specific Delivery of Functional Molecules, Methods Mol Biol, vol.1049, pp.495-511, 2013.
DOI : 10.1007/978-1-62703-547-7_37

G. Atkin-smith, R. Tixeira, S. Paone, S. Mathivanan, C. Collins et al., A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure, Nature Communications, vol.2, issue.1, p.7439, 2015.
DOI : 10.1038/nprot.2007.296

J. Cheng, A. Torkamani, Y. Peng, T. Jones, and R. Lerner, Plasma membrane associated transcription of cytoplasmic DNA, Proceedings of the National Academy of Sciences, vol.477, issue.7363, pp.10827-10831, 2012.
DOI : 10.1038/nature10371

N. Iraci, T. Leonardi, F. Gessler, B. Vega, and S. Pluchino, Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles, International Journal of Molecular Sciences, vol.7, issue.2, 2016.
DOI : 10.3390/ijms17020174

Y. Shen, L. Bert, N. Chitre, A. Koo, C. Nga et al., Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells, Cell Reports, vol.11, issue.3, pp.460-473, 2015.
DOI : 10.1016/j.celrep.2015.03.041

A. Byrd, B. Zybailov, L. Maddukuri, J. Gao, J. Marecki et al., Evidence That G-quadruplex DNA Accumulates in the Cytoplasm and Participates in Stress Granule Assembly in Response to Oxidative Stress, Journal of Biological Chemistry, vol.291, issue.34, pp.18041-18057, 2016.
DOI : 10.1074/jbc.M116.718478

A. Orozco, C. Jorgez, C. Horne, D. Marquez-do, M. Chapman et al., Membrane Protected Apoptotic Trophoblast Microparticles Contain Nucleic Acids, The American Journal of Pathology, vol.173, issue.6, pp.1595-1608, 2008.
DOI : 10.2353/ajpath.2008.080414

URL : http://europepmc.org/articles/pmc2626372?pdf=render

A. Waldenström, N. Gennebäck, U. Hellman, and G. Ronquist, Cardiomyocyte Microvesicles Contain DNA/RNA and Convey Biological Messages to Target Cells, PLoS ONE, vol.18, issue.4, 2012.
DOI : 10.1371/journal.pone.0034653.s006

M. Eldh, K. Ekström, H. Valadi, M. Sjöstrand, B. Olsson et al., Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA, PLoS ONE, vol.103, issue.12, 2010.
DOI : 10.1371/journal.pone.0015353.t002

J. Aliotta, M. Pereira, M. Li, A. Amaral, A. Sorokina et al., Stable cell fate changes in marrow cells induced by lung-derived microvesicles, Journal of Extracellular Vesicles, vol.6, issue.1
DOI : 10.1002/elps.11501301200

J. Aliotta, M. Pereira, K. Johnson, N. De-paz, M. Dooner et al., Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription, Experimental Hematology, vol.38, issue.3
DOI : 10.1016/j.exphem.2010.01.002

J. Krol, I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay, Nature Reviews Genetics, vol.36, issue.9, pp.597-610, 2010.
DOI : 10.1038/nrg2843

P. Diehl, A. Fricke, L. Sander, J. Stamm, N. Bassler et al., Microparticles: major transport vehicles for distinct microRNAs in circulation, Cardiovascular Research, vol.122, issue.23, pp.633-644, 2012.
DOI : 10.1161/CIRCULATIONAHA.110.958967

X. Zhu, Y. You, Q. Li, C. Zeng, F. Fu et al., BCR-ABL1???positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia, Leukemia, vol.5, issue.8, pp.1666-1675, 2014.
DOI : 10.1016/j.tcb.2008.11.003

J. Zhang, S. Li, L. Li, M. Li, C. Guo et al., Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function, Genomics, Proteomics & Bioinformatics, vol.13, issue.1, pp.17-24, 2015.
DOI : 10.1016/j.gpb.2015.02.001

URL : https://doi.org/10.1016/j.gpb.2015.02.001

J. Cai, G. Wu, P. Jose, and C. Zeng, Functional transferred DNA within extracellular vesicles, Experimental Cell Research, vol.349, issue.1, pp.179-183, 2016.
DOI : 10.1016/j.yexcr.2016.10.012

E. Cocucci, G. Racchetti, and J. Meldolesi, Shedding microvesicles: artefacts no more, Trends in Cell Biology, vol.19, issue.2, pp.43-51, 2009.
DOI : 10.1016/j.tcb.2008.11.003

T. Tian, Y. Zhu, Y. Zhou, G. Liang, Y. Wang et al., Exosome Uptake through Clathrin-mediated Endocytosis and Macropinocytosis and Mediating miR-21 Delivery, Journal of Biological Chemistry, vol.1775, issue.32, pp.22258-22267, 2014.
DOI : 10.1016/j.cytogfr.2005.09.006

URL : http://www.jbc.org/content/289/32/22258.full.pdf

I. Prada and J. Meldolesi, Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets, International Journal of Molecular Sciences, vol.17, issue.8, 2016.
DOI : 10.1007/s12035-014-9054-5

X. Loyer, A. Vion, A. Tedgui, and C. Boulanger, Microvesicles as Cell-Cell Messengers in Cardiovascular Diseases, Circulation Research, vol.114, issue.2, pp.345-353, 2014.
DOI : 10.1161/CIRCRESAHA.113.300858

G. Lombardo, P. Dentelli, G. Togliatto, A. Rosso, M. Gili et al., Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action, Scientific Reports, vol.168, issue.1, p.25689, 2016.
DOI : 10.1083/jcb.200405116

URL : http://www.nature.com/articles/srep25689.pdf

A. Zernecke, K. Bidzhekov, H. Noels, E. Shagdarsuren, L. Gan et al., Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection, Science Signaling, vol.2, issue.100, p.81, 2009.
DOI : 10.1126/scisignal.2000610

V. Cantaluppi, S. Gatti, D. Medica, F. Figliolini, S. Bruno et al., Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia???reperfusion injury by microRNA-dependent reprogramming of resident renal cells, Kidney International, vol.82, issue.4, pp.412-427, 2012.
DOI : 10.1038/ki.2012.105

B. Van-balkom, O. De-jong, M. Smits, J. Brummelman, K. Den-ouden et al., Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells, Blood, vol.121, issue.19, pp.3997-4006, 2013.
DOI : 10.1182/blood-2013-02-478925

X. Liang, L. Zhang, S. Wang, Q. Han, and R. Zhao, Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a, Journal of Cell Science, vol.129, issue.11, pp.2182-2189, 2016.
DOI : 10.1242/jcs.170373

T. Kang, T. Jones, C. Naddell, M. Bacanamwo, J. Calvert et al., Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31, STEM CELLS Translational Medicine, vol.457, issue.suppl, pp.440-450, 2016.
DOI : 10.1038/nature07758

J. Li, Y. Zhang, and Y. Liu, Microvesicle-mediated transfer of microR- NA-150 from monocytes to endothelial cells promotes angiogenesis

D. Ramakrishnan, R. Hajj-ali, Y. Chen, and R. Silverstein, Extracellular vesicles activate a CD36-dependent signaling pathway to inhibit microvascular endothelial cell migration and tube formation

C. Yang, B. Mwaikambo, T. Zhu, C. Gagnon, J. Lafleur et al., Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.294, issue.2, pp.467-476, 2007.
DOI : 10.1159/000054077

URL : http://ajpregu.physiology.org/content/ajpregu/294/2/R467.full.pdf

S. Brodsky, F. Zhang, A. Nasjletti, and M. Goligorsky, Endothelium-derived microparticles impair endothelial function in vitro, American Journal of Physiology-Heart and Circulatory Physiology, vol.286, issue.5, pp.1910-1915, 2003.
DOI : 10.1073/pnas.92.4.1137

A. Mezentsev, R. Merks, O. Riordan, E. Chen, J. Mendelev et al., Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress, American Journal of Physiology-Heart and Circulatory Physiology, vol.289, issue.3, pp.1106-1114, 2005.
DOI : 10.1016/S0008-6363(03)00367-5

M. Janiszewski, D. Carmo, A. Pedro, M. Silva, E. Knobel et al., Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway*, Critical Care Medicine, vol.32, issue.3, pp.818-825, 2004.
DOI : 10.1097/01.CCM.0000114829.17746.19

X. Zou, D. Gu, X. Xing, Z. Cheng, D. Gong et al., Human mesenchymal stromal cell-derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance angiogenesis in rats, Am J Transl Res, vol.8, pp.4289-4299, 2016.

A. Brill, O. Dashevsky, J. Rivo, Y. Gozal, and D. Varon, Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization, Cardiovascular Research, vol.67, issue.1, pp.30-38, 2005.
DOI : 10.1016/j.cardiores.2005.04.007

J. Ma, Y. Zhao, L. Sun, X. Sun, X. Zhao et al., -Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D, STEM CELLS Translational Medicine, vol.7, issue.1, pp.51-59, 2017.
DOI : 10.1371/journal.pone.0030503

URL : http://doi.org/10.5966/sctm.2016-0038

T. Lopatina, S. Bruno, C. Tetta, N. Kalinina, M. Porta et al., Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential, Cell Communication and Signaling, vol.12, issue.1, pp.26-36, 2014.
DOI : 10.4049/jimmunol.1001656

M. Ohtsuka, K. Sasaki, T. Ueno, R. Seki, T. Nakayoshi et al., Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients, Atherosclerosis, vol.227, issue.2, pp.275-282, 2013.
DOI : 10.1016/j.atherosclerosis.2013.01.040

A. Leroyer, P. Rautou, J. Silvestre, Y. Castier, G. Lesèche et al., CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis, Journal of the American College of Cardiology, vol.52, issue.16, pp.1302-1311, 2008.
DOI : 10.1016/j.jacc.2008.07.032

URL : https://doi.org/10.1016/j.jacc.2008.07.032

D. Braig, T. Nero, and H. Koch, Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites, Nature Communications, vol.10, 2017.
DOI : 10.1021/bi00793a015

M. Turu, M. Slevin, S. Matou, D. West, C. Rodríguez et al., C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression, BMC Cell Biology, vol.9, issue.1, pp.47-57, 2008.
DOI : 10.1186/1471-2121-9-47

J. Habersberger, F. Strang, A. Scheichl, N. Htun, N. Bassler et al., Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction, Cardiovascular Research, vol.401, issue.1, pp.64-72, 2012.
DOI : 10.1007/s00216-011-5174-1

G. Taraboletti, D. Ascenzo, S. Borsotti, P. Giavazzi, R. Pavan et al., Shedding of the Matrix Metalloproteinases MMP-2, MMP-9, and MT1-MMP as Membrane Vesicle-Associated Components by Endothelial Cells, The American Journal of Pathology, vol.160, issue.2
DOI : 10.1016/S0002-9440(10)64887-0

R. Lacroix, F. Sabatier, A. Mialhe, A. Basire, R. Pannell et al., Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro, Blood, vol.110, issue.7, pp.2432-2439, 2007.
DOI : 10.1182/blood-2007-02-069997

URL : https://hal.archives-ouvertes.fr/inserm-00160595

R. Soleti, T. Benameur, C. Porro, M. Panaro, R. Andriantsitohaina et al., Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors, Carcinogenesis, vol.66, issue.14, pp.580-588, 2009.
DOI : 10.1158/0008-5472.CAN-05-4588

T. Benameur, R. Soleti, C. Porro, R. Andriantsitohaina, and M. Martínez, Microparticles Carrying Sonic Hedgehog Favor Neovascularization through the Activation of Nitric Oxide Pathway in Mice, PLoS ONE, vol.29, issue.9, 2010.
DOI : 10.1371/journal.pone.0012688.s001

V. Marrachelli, M. Mastronardi, M. Sarr, R. Soleti, D. Leonetti et al., Sonic Hedgehog Carried by Microparticles Corrects Angiotensin II-Induced Hypertension and Endothelial Dysfunction in Mice, PLoS ONE, vol.60, issue.8, 2013.
DOI : 10.1371/journal.pone.0072861.g003

C. Yang, W. Xiong, Q. Qiu, Z. Shao, Z. Shao et al., Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.42, issue.8, pp.941-949, 2011.
DOI : 10.1167/iovs.07-0721

C. Yang, C. Gagnon, X. Hou, and P. Hardy, Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells, Cancer Biology & Therapy, vol.148, issue.5, pp.448-456, 2010.
DOI : 10.1161/01.CIR.0000080735.93327.00

H. Kim, K. Song, J. Chung, K. Lee, and S. Lee, Platelet microparticles induce angiogenesis in vitro, British Journal of Haematology, vol.264, issue.3, pp.376-384, 2004.
DOI : 10.1016/S0049-3848(00)00192-4

G. Arderiu, E. Peña, and L. Badimon, Angiogenic Microvascular Endothelial Cells Release Microparticles Rich in Tissue Factor That Promotes Postischemic Collateral Vessel Formation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.35, issue.2, pp.348-357, 2015.
DOI : 10.1161/ATVBAHA.114.303927

J. Zhang, C. Chen, B. Hu, X. Niu, X. Liu et al., Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling, International Journal of Biological Sciences, vol.12, issue.12, pp.1472-1487, 2016.
DOI : 10.7150/ijbs.15514

X. Li, C. Jiang, and J. Zhao, Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function, Journal of Diabetes and its Complications, vol.30, issue.6, pp.986-992, 2016.
DOI : 10.1016/j.jdiacomp.2016.05.009

B. Zhang, X. Wu, X. Zhang, Y. Sun, Y. Yan et al., Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/??-Catenin Pathway, STEM CELLS Translational Medicine, vol.435, issue.5, pp.513-522, 2015.
DOI : 10.1038/nature03504

J. Anderson, H. Johansson, and C. Graham, Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling, STEM CELLS, vol.31, issue.Suppl, pp.601-613, 2016.
DOI : 10.1002/stem.1409

A. Shabbir, A. Cox, L. Rodriguez-menocal, M. Salgado, and E. Van-badiavas, Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro, Stem Cells and Development, vol.24, issue.14, pp.1635-1647, 2015.
DOI : 10.1089/scd.2014.0316

R. Blanco and H. Gerhardt, VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med, 2013.

H. Sheldon, E. Heikamp, H. Turley, R. Dragovic, P. Thomas et al., New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes, Blood, vol.116, issue.13, pp.2385-2394, 2009.
DOI : 10.1182/blood-2009-08-239228

Z. Ou, F. Chang, D. Luo, X. Liao, Z. Wang et al., Endothelium-derived microparticles inhibit angiogenesis in the heart and enhance the inhibitory effects of hypercholesterolemia on angiogenesis, American Journal of Physiology-Endocrinology and Metabolism, vol.112, issue.4
DOI : 10.1152/ajpheart.00383.2002

T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. Van-der-zee et al., Isolation of Putative Progenitor Endothelial Cells for Angiogenesis, Science, vol.149, issue.5302, pp.964-967, 1997.
DOI : 10.1016/0006-291X(91)91276-I

M. Prokopi, G. Pula, U. Mayr, C. Devue, J. Gallagher et al., Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures, Blood, vol.114, issue.3, pp.723-732, 2009.
DOI : 10.1182/blood-2009-02-205930

P. Critser and M. Yoder, Endothelial colony-forming cell role in neoangiogenesis and tissue repair, Current Opinion in Organ Transplantation, vol.15, issue.1, pp.68-72, 2010.
DOI : 10.1097/MOT.0b013e32833454b5

A. Ranghino, V. Cantaluppi, C. Grange, L. Vitillo, F. Fop et al., Endothelial Progenitor Cell-Derived Microvesicles Improve Neovascularization in a Murine Model of Hindlimb Ischemia, International Journal of Immunopathology and Pharmacology, vol.152, issue.1, pp.75-85, 2012.
DOI : 10.1182/blood-2009-02-205930

V. Cantaluppi, L. Biancone, F. Figliolini, S. Beltramo, D. Medica et al., Microvesicles Derived from Endothelial Progenitor Cells Enhance Neoangiogenesis of Human Pancreatic Islets, Cell Transplantation, vol.78, issue.3, pp.1305-1320, 2012.
DOI : 10.1093/cvr/cvn081

X. Teng, L. Chen, W. Chen, Y. J. Yang, Z. Shen et al., Mesenchymal Stem Cell-Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti-Inflammation, Cellular Physiology and Biochemistry, vol.37, issue.6, pp.2415-2424, 2015.
DOI : 10.1159/000438594

T. Doeppner, J. Herz, A. Görgens, J. Schlechter, A. Ludwig et al., Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression, STEM CELLS Translational Medicine, vol.19, issue.Suppl, pp.1131-1143, 2015.
DOI : 10.1038/cdd.2012.26

Y. Zhang, M. Chopp, Y. Meng, M. Katakowski, H. Xin et al., Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury, Journal of Neurosurgery, vol.11, issue.4, pp.856-867, 2015.
DOI : 10.1089/neu.2010.1579

H. Zhang, X. Liu, S. Huang, X. Bi, H. Wang et al., Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Stimulated by Hypoxia Promote Angiogenesis Both In Vitro and In Vivo, Stem Cells and Development, vol.21, issue.18, pp.3289-3297, 2012.
DOI : 10.1089/scd.2012.0095

X. Qi, J. Zhang, H. Yuan, Z. Xu, Q. Li et al., Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats, International Journal of Biological Sciences, vol.12, issue.7, pp.836-849, 2016.
DOI : 10.7150/ijbs.14809

E. Shai, I. Rosa, A. Parguiña, S. Motahedeh, D. Varon et al., Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus, Journal of Proteomics, vol.76, pp.287-296, 2012.
DOI : 10.1016/j.jprot.2012.02.030

A. Janowska-wieczorek, M. Wysoczynski, J. Kijowski, L. Marquez-curtis, B. Machalinski et al., Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer, International Journal of Cancer, vol.39, issue.5, pp.752-760, 2005.
DOI : 10.1016/0304-4157(91)90014-N

M. Gambim, O. Do-carmo-ade, L. Marti, S. Veríssimo-filho, L. Lopes et al., Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction, Critical Care, vol.11, issue.5, pp.10-1186, 2007.
DOI : 10.1186/cc6133

Y. Hayon, O. Dashevsky, E. Shai, A. Brill, D. Varon et al., Platelet Microparticles Induce Angiogenesis and Neurogenesis after Cerebral Ischemia, Current Neurovascular Research, vol.9, issue.3, pp.185-192, 2012.
DOI : 10.2174/156720212801619018

L. Shan, J. Li, L. Zu, C. Niu, A. Ferro et al., Platelet-Derived Microparticles are Implicated in Remote Ischemia Conditioning in a Rat Model of Cerebral Infarction, CNS Neuroscience & Therapeutics, vol.227, issue.Suppl, pp.917-925, 2013.
DOI : 10.1016/j.atherosclerosis.2013.01.028

S. Mause, E. Ritzel, E. Liehn, M. Hristov, K. Bidzhekov et al., Platelet Microparticles Enhance the Vasoregenerative Potential of Angiogenic Early Outgrowth Cells After Vascular Injury, Circulation, vol.122, issue.5, pp.495-506, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.909473

H. Tahiri, C. Yang, F. Duhamel, S. Omri, E. Picard et al., p75 Neurotrophin Receptor Participates in the Choroidal Antiangiogenic and Apoptotic Effects of T-Lymphocyte???Derived Microparticles, Investigative Opthalmology & Visual Science, vol.54, issue.9, pp.6084-6092, 2013.
DOI : 10.1167/iovs.13-11896

H. Tahiri, S. Omri, and C. Yang, Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization, Scientific Reports, vol.179, issue.1, 2016.
DOI : 10.3791/52510

Y. Xiong, P. Yang, R. Proia, and T. Hla, Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development, Journal of Clinical Investigation, vol.124, issue.11, pp.4823-4828, 2014.
DOI : 10.1172/JCI77685DS1

J. Delobel, M. Prudent, O. Rubin, D. Crettaz, J. Tissot et al., Subcellular fractionation of stored red blood cells reveals a compartment-based protein carbonylation evolution, Journal of Proteomics, vol.76, pp.181-193, 2012.
DOI : 10.1016/j.jprot.2012.05.004

M. Föller, S. Huber, and F. Lang, Erythrocyte programmed cell death, IUBMB Life, vol.125, issue.Pt 18, pp.661-668, 2008.
DOI : 10.1152/ajpregu.00110.2007

P. Mantel, D. Hjelmqvist, and M. Walch, Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria, Nature Communications, vol.127, pp.12727-12737, 2016.
DOI : 10.1242/jcs.148619

A. Awojoodu, P. Keegan, A. Lane, Y. Zhang, K. Lynch et al., Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD, Blood, vol.124, issue.12, pp.1941-1950, 2014.
DOI : 10.1182/blood-2014-01-543652

S. Camus, D. Moraes, J. Bonnin, and P. , Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease, Blood, vol.125, issue.24, pp.3805-3814, 2015.
DOI : 10.1182/blood-2014-07-589283

URL : https://hal.archives-ouvertes.fr/hal-01186628

B. Escudier, T. Dorval, and N. Chaput, Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial, Journal of Translational Medicine, vol.3, issue.1, pp.10-10, 2005.
DOI : 10.1186/1479-5876-3-10

URL : https://hal.archives-ouvertes.fr/inserm-00092539

M. Morse, J. Garst, T. Osada, S. Khan, A. Hobeika et al., A phase I study of dexosome immunotherapy in patients with advanced nonsmall cell lung cancer, Journal of Translational Medicine, vol.3, issue.1, pp.9-10, 2005.
DOI : 10.1186/1479-5876-3-9

B. Besse, M. Charrier, and V. Lapierre, Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC, OncoImmunology, vol.5, issue.4, 2016.
DOI : 10.1084/jem.20062387

URL : https://hal.archives-ouvertes.fr/hal-01440237

S. Dai, D. Wei, Z. Wu, X. Zhou, X. Wei et al., Phase I Clinical Trial of Autologous Ascites-derived Exosomes Combined With GM-CSF for Colorectal Cancer, Molecular Therapy, vol.16, issue.4, pp.782-790, 2008.
DOI : 10.1038/mt.2008.1

J. Anderson, H. Johansson, and C. Graham, Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling, STEM CELLS, vol.31, issue.Suppl, pp.601-613, 2016.
DOI : 10.1002/stem.1409

G. Togliatto, P. Dentelli, M. Gili, S. Gallo, C. Deregibus et al., Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications, International Journal of Obesity, vol.129, issue.1, pp.102-111, 2016.
DOI : 10.1089/scd.2013.0618

C. Gardiner, D. Vizio, D. Sahoo, S. Théry, C. Witwer et al., Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey, Journal of Extracellular Vesicles, vol.11, issue.1, p.32945, 2016.
DOI : 10.1038/nrurol.2014.301

G. Shelke, C. Lässer, Y. Gho, and J. Lötvall, Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum, Journal of Extracellular Vesicles, vol.16, issue.1, 2014.
DOI : 10.1089/ten.tea.2009.0727

H. Kim, D. Choi, S. Yun, S. Choi, J. Kang et al., Proteomic Analysis of Microvesicles Derived from Human Mesenchymal Stem Cells, Journal of Proteome Research, vol.11, issue.2, pp.839-849, 2012.
DOI : 10.1021/pr200682z

A. Eirin, S. Riester, X. Zhu, H. Tang, J. Evans et al., MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells, Gene, vol.551, issue.1, pp.55-64, 2014.
DOI : 10.1016/j.gene.2014.08.041

S. Baglio, K. Rooijers, D. Koppers-lalic, F. Verweij, P. Lanzón et al., Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species, Stem Cell Research & Therapy, vol.87, issue.1, pp.127-137, 2015.
DOI : 10.1128/JVI.01804-12

C. Banfi, M. Brioschi, R. Wait, S. Begum, E. Gianazza et al., Proteome of endothelial cell-derived procoagulant microparticles, PROTEOMICS, vol.101, issue.17, pp.4443-4455, 2005.
DOI : 10.4049/jimmunol.169.10.5531

D. Peterson, T. Sander, S. Kaul, B. Wakim, B. Halligan et al., Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles, PROTEOMICS, vol.15, issue.12, pp.2430-2446, 2008.
DOI : 10.1080/713857424

Y. Liu, W. Huang, R. Zhang, J. Wu, L. Li et al., Proteomic analysis of TNF-??-activated endothelial cells and endothelial microparticles, Molecular Medicine Reports, vol.7, issue.1, pp.318-326, 2013.
DOI : 10.3892/mmr.2012.1139

S. Bruno, C. Grange, M. Deregibus, R. Calogero, S. Saviozzi et al., Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury, Journal of the American Society of Nephrology, vol.20, issue.5, pp.1053-1067, 2009.
DOI : 10.1681/ASN.2008070798

URL : http://jasn.asnjournals.org/content/20/5/1053.full.pdf

K. Vallabhaneni, P. Penfornis, S. Dhule, F. Guillonneau, K. Adams et al., Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites, Oncotarget, vol.6, issue.7, pp.4953-4967, 2015.
DOI : 10.18632/oncotarget.3211

URL : https://hal.archives-ouvertes.fr/inserm-01179843

B. Garcia, D. Smalley, H. Cho, J. Shabanowitz, K. Ley et al., The Platelet Microparticle Proteome, Journal of Proteome Research, vol.4, issue.5, pp.1516-1521, 2005.
DOI : 10.1021/pr0500760

W. Dean, M. Lee, T. Cummins, D. Schultz, and D. Powell, Proteomic and functional characterisation of platelet microparticle size classes, Thrombosis and Haemostasis
DOI : 10.1160/TH09-04-0243

M. Yang, J. Chen, F. Su, Y. B. Su, F. Lin et al., Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells, Molecular Cancer, vol.10, issue.1, pp.117-127, 2011.
DOI : 10.1186/1471-2172-3-7

G. Bosman, E. Lasonder, M. Luten, B. Roerdinkholder-stoelwinder, V. Novotný et al., The proteome of red cell membranes and vesicles during storage in blood bank conditions, Transfusion, vol.48, pp.827-835, 2008.

J. Dalli, T. Montero-melendez, L. Norling, X. Yin, C. Hinds et al., Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties, Molecular & Cellular Proteomics, vol.84, issue.8, pp.2205-2219, 2013.
DOI : 10.1182/blood-2012-04-423525

M. Mayr, D. Grainger, U. Mayr, A. Leroyer, G. Leseche et al., Proteomics, Metabolomics, and Immunomics on Microparticles Derived From Human Atherosclerotic Plaques, Circulation: Cardiovascular Genetics, vol.2, issue.4, pp.379-388, 2009.
DOI : 10.1161/CIRCGENETICS.108.842849

C. Lawson, J. Vicencio, D. Yellon, and S. Davidson, Microvesicles and exosomes: new players in metabolic and cardiovascular disease, Journal of Endocrinology, vol.4, issue.2
DOI : 10.1089/scd.2013.0479

C. Lai, O. Mardini, M. Ericsson, S. Prabhakar, C. Maguire et al., Using a Multimodal Imaging Reporter, ACS Nano, vol.8, issue.1, pp.483-494, 2014.
DOI : 10.1021/nn404945r

C. Lai, E. Kim, C. Badr, R. Weissleder, T. Mempel et al., Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters, Nature Communications, vol.92, issue.1, 2015.
DOI : 10.1073/pnas.92.16.7297

L. Hu, S. Wickline, and J. Hood, Magnetic resonance imaging of melanoma exosomes in lymph nodes, Magnetic Resonance in Medicine, vol.323, issue.1, pp.266-271, 2014.
DOI : 10.1016/j.yexcr.2014.01.014

W. Hwang-do, H. Choi, S. Jang, M. Yoo, J. Park et al., Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99mTc-HMPAO, Scientific Reports, vol.7, issue.22, pp.15636-15646, 2015.
DOI : 10.1038/nprot.2012.131

O. Wiklander, J. Nordin, O. Loughlin, and A. , Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting, Journal of Extracellular Vesicles, vol.56, issue.1, p.26316, 2015.
DOI : 10.1093/occmed/kql052

D. Todorova and S. Simoncini, Romaric Lacroix, Florence Sabatier and Françoise Extracellular Vesicles in Angiogenesis Print ISSN: 0009-7330, Online ISSN, pp.1524-4571

©. Copyright, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, American Heart Association, vol.120, pp.1658-1673, 2017.