S. A. West, A. S. Griffin, and A. Gardner, Evolutionary Explanations for Cooperation, Current Biology, vol.17, issue.16, pp.661-72, 2007.
DOI : 10.1016/j.cub.2007.06.004

M. G. Blango and M. A. Mulvey, Bacterial landlines: contact-dependent signaling in bacterial populations, Current Opinion in Microbiology, vol.12, issue.2, pp.177-81, 2009.
DOI : 10.1016/j.mib.2009.01.011

A. B. Russell, S. B. Peterson, and J. Mougous, Type VI secretion system effectors: poisons with a purpose, Nature Reviews Microbiology, vol.8, issue.2, pp.137-185, 2014.
DOI : 10.1371/journal.pone.0057609

J. M. Silverman, Y. R. Brunet, E. Cascales, and J. Mougous, Structure and Regulation of the Type VI Secretion System, Annual Review of Microbiology, vol.66, issue.1, pp.453-72, 2012.
DOI : 10.1146/annurev-micro-121809-151619

URL : https://hal.archives-ouvertes.fr/hal-01458240

S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proceedings of the National Academy of Sciences, vol.22, issue.22, pp.15508-15521, 2007.
DOI : 10.1093/nar/22.22.4673

URL : http://www.pnas.org/content/104/39/15508.full.pdf

A. B. Russell, Type VI secretion delivers bacteriolytic effectors to target cells, Nature, vol.124, issue.7356, pp.343-350, 2011.
DOI : 10.1111/j.1574-6968.1994.tb07270.x

URL : http://europepmc.org/articles/pmc3146020?pdf=render

A. B. Russell, Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors, Nature, vol.277, issue.7446, pp.508-520, 2013.
DOI : 10.1074/jbc.M205375200

URL : http://europepmc.org/articles/pmc3652678?pdf=render

L. S. Ma, A. Hachani, J. S. Lin, A. Filloux, and E. M. Lai, Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta, Cell Host & Microbe, vol.16, issue.1, pp.94-104, 2014.
DOI : 10.1016/j.chom.2014.06.002

E. Durand, C. Cambillau, E. Cascales, L. Journet, and . Vgrg, VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors, Trends in Microbiology, vol.22, issue.9, pp.498-507, 2014.
DOI : 10.1016/j.tim.2014.06.004

URL : https://hal.archives-ouvertes.fr/hal-01458195

S. Borgeaud, L. C. Metzger, T. Scrignari, and M. Blokesch, The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer, Science, vol.109, issue.1, pp.63-70, 2015.
DOI : 10.1016/0378-1119(91)90604-A

E. Cascales, The type VI secretion toolkit. EMBO Rep, pp.735-776, 2008.

G. Bönemann, A. Pietrosiuk, A. Diemand, H. Zentgraf, and A. Mogk, Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion, The EMBO Journal, vol.47, issue.4, pp.315-340, 2009.
DOI : 10.1111/j.1365-2958.2007.05993.x

M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, and J. J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.1, issue.7388, pp.182-188, 2012.
DOI : 10.1038/nprot.2006.432

M. Kudryashev, Structure of the Type VI Secretion System Contractile Sheath, Cell, vol.160, issue.5, pp.952-62, 2015.
DOI : 10.1016/j.cell.2015.01.037

S. J. Coulthurst, The Type VI secretion system ??? a widespread and versatile cell targeting system, Research in Microbiology, vol.164, issue.6, pp.640-54, 2013.
DOI : 10.1016/j.resmic.2013.03.017

B. T. Ho, T. G. Dong, and J. J. Mekalanos, A View to a Kill: The Bacterial Type VI Secretion System, Cell Host & Microbe, vol.15, issue.1, pp.9-21, 2014.
DOI : 10.1016/j.chom.2013.11.008

A. Zoued, Architecture and assembly of the Type VI secretion system, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.8, pp.1664-73, 2014.
DOI : 10.1016/j.bbamcr.2014.03.018

URL : https://hal.archives-ouvertes.fr/hal-01458220

G. Bönemann, A. Pietrosiuk, and A. Mogk, Tubules and donuts: a type VI secretion story, Molecular Microbiology, vol.72, issue.4, pp.815-836, 2010.
DOI : 10.1099/00221287-139-4-859

Y. R. Brunet, J. Hénin, H. Celia, and E. Cascales, Type VI secretion and bacteriophage tail tubes share a common assembly pathway, EMBO reports, vol.15, issue.3, pp.315-336, 2014.
DOI : 10.1002/embr.201337936

URL : https://hal.archives-ouvertes.fr/hal-01458198

M. M. Shneider, PAAR-repeat proteins sharpen and diversify the type VI secretion system spike, Nature, vol.215, issue.7462, pp.350-353, 2013.
DOI : 10.1016/S0022-2836(05)80360-2

Y. R. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging Type VI Secretion-Mediated Bacterial Killing, Cell Reports, vol.3, issue.1, pp.36-41, 2013.
DOI : 10.1016/j.celrep.2012.11.027

URL : https://hal.archives-ouvertes.fr/hal-01458227

M. S. Aschtgen, M. Gavioli, A. Dessen, R. Lloubès, and E. Cascales, Type VI secretion system to the cell wall, Molecular Microbiology, vol.66, issue.4, pp.886-99, 2010.
DOI : 10.1128/jb.174.24.7982-7988.1992

M. S. Aschtgen, C. S. Bernard, S. De-bentzmann, R. Lloubès, and E. Cascales, SciN Is an Outer Membrane Lipoprotein Required for Type VI Secretion in Enteroaggregative Escherichia coli, Journal of Bacteriology, vol.190, issue.22, pp.7523-7554, 2008.
DOI : 10.1128/JB.00945-08

L. S. Ma, J. S. Lin, and E. M. Lai, An IcmF Family Protein, ImpLM, Is an Integral Inner Membrane Protein Interacting with ImpKL, and Its Walker A Motif Is Required for Type VI Secretion System-Mediated Hcp Secretion in Agrobacterium tumefaciens, Journal of Bacteriology, vol.191, issue.13, pp.4316-4345, 2009.
DOI : 10.1128/JB.00029-09

C. Felisberto-rodrigues, Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar, PLoS Pathogens, vol.15, issue.11, p.1002386, 2011.
DOI : 10.1371/journal.ppat.1002386.s010

URL : https://hal.archives-ouvertes.fr/hal-01458272

L. S. Ma, F. Narberhaus, and E. M. Lai, IcmF Family Protein TssM Exhibits ATPase Activity and Energizes Type VI Secretion, Journal of Biological Chemistry, vol.181, issue.19, pp.15610-15631, 2012.
DOI : 10.1126/science.290.5493.979

URL : http://www.jbc.org/content/287/19/15610.full.pdf

M. S. Aschtgen, A. Zoued, R. Lloubès, L. Journet, and E. Cascales, Sci-1 Type VI secretion system, is inserted by YidC, MicrobiologyOpen, vol.72, issue.1, pp.71-82, 2012.
DOI : 10.1128/IAI.72.6.3398-3409.2004

URL : https://hal.archives-ouvertes.fr/hal-01458239

E. Durand, Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems, Journal of Biological Chemistry, vol.40, issue.17, pp.14157-68, 2012.
DOI : 10.1016/j.jmb.2007.05.022

URL : https://hal.archives-ouvertes.fr/hal-01458247

J. H. Chang and Y. G. Kim, Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae, Journal of Microbiology, vol.1843, issue.1, pp.32-39, 2015.
DOI : 10.1016/j.bbamcr.2014.03.018

A. Kucukelbir, F. J. Sigworth, and H. D. Tagare, Quantifying the local resolution of cryo-EM density maps, Nature Methods, vol.33, issue.1, pp.63-68, 2014.
DOI : 10.1002/jcc.20084

V. S. Nguyen, Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody, Acta Crystallographica Section F Structural Biology Communications, vol.1843, issue.3, pp.266-271, 2015.
DOI : 10.1016/j.bbamcr.2014.03.018

URL : https://hal.archives-ouvertes.fr/hal-01439004

V. S. Nguyen and L. Logger, Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody, PLOS ONE, vol.3, issue.3, 2015.
DOI : 10.1371/journal.pone.0122187.t002

URL : https://hal.archives-ouvertes.fr/hal-01217205

A. Diepold, Deciphering the assembly of the Yersinia type III secretion injectisome, The EMBO Journal, vol.14, issue.11
DOI : 10.1128/jb.176.6.1561-1569.1994

P. K. Judd, R. B. Kumar, and A. Das, Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus, Proceedings of the National Academy of Sciences, vol.409, issue.6820, pp.11498-503, 2005.
DOI : 10.1038/35054586

K. R. Hardie, S. Lory, and A. P. Pugsley, Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein, EMBO J, vol.15, pp.978-88, 1996.

S. L. Drake, S. A. Sandstedt, and M. Koomey, PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer, Molecular Microbiology, vol.23, issue.4, pp.657-68, 1997.
DOI : 10.1046/j.1365-2958.1997.2511618.x

P. Burghout, Role of the Pilot Protein YscW in the Biogenesis of the YscC Secretin in Yersinia enterocolitica, Journal of Bacteriology, vol.186, issue.16, pp.5366-75, 2004.
DOI : 10.1128/JB.186.16.5366-5375.2004

A. M. Crago and V. Koronakis, InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization, Molecular Microbiology, vol.130, issue.1, pp.47-56, 1998.
DOI : 10.1016/0966-842X(93)90087-8

S. Daefler and M. Russel, The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG, Molecular Microbiology, vol.63, issue.6, pp.1367-80, 1998.
DOI : 10.1016/0092-8674(88)90162-6

Y. R. Brunet, C. S. Bernard, M. Gavioli, R. Lloubès, and E. Cascales, An Epigenetic Switch Involving Overlapping Fur and DNA Methylation Optimizes Expression of a Type VI Secretion Gene Cluster, PLoS Genetics, vol.66, issue.7, p.1002205, 2011.
DOI : 10.1371/journal.pgen.1002205.s002

URL : https://hal.archives-ouvertes.fr/hal-01458278

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.27, issue.2, pp.6640-6645, 2000.
DOI : 10.1093/nar/27.2.389

M. K. Chaveroche, J. M. Ghigo, and C. Enfert, A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans, Nucleic Acids Research, vol.28, issue.22, p.97, 2000.
DOI : 10.1093/nar/28.22.e97

F. Van-den-ent and J. Löwe, RF cloning: A restriction-free method for inserting target genes into plasmids, Journal of Biochemical and Biophysical Methods, vol.67, issue.1, pp.67-74, 2006.
DOI : 10.1016/j.jbbm.2005.12.008

E. Gueguen and E. Cascales, ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.1, pp.32-40, 2013.
DOI : 10.1128/AEM.02504-12

A. Zaslaver, A comprehensive library of fluorescent transcriptional reporters for Escherichia coli, Nature Methods, vol.297, issue.8, pp.623-631, 2006.
DOI : 10.1038/nmeth895

A. Zoued, TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System, Journal of Biological Chemistry, vol.12, issue.38, pp.27031-27072, 2013.
DOI : 10.1371/journal.pone.0067647

URL : https://hal.archives-ouvertes.fr/hal-01458230

G. Tang, EMAN2: An extensible image processing suite for electron microscopy, Journal of Structural Biology, vol.157, issue.1, pp.38-46, 2007.
DOI : 10.1016/j.jsb.2006.05.009

S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, Journal of Structural Biology, vol.180, issue.3, pp.519-549, 2012.
DOI : 10.1016/j.jsb.2012.09.006

S. H. Scheres, Semi-automated selection of cryo-EM particles in RELION-1.3, Journal of Structural Biology, vol.189, issue.2, pp.114-136, 2015.
DOI : 10.1016/j.jsb.2014.11.010

S. Chen, High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy, Ultramicroscopy, vol.135, pp.24-35, 2013.
DOI : 10.1016/j.ultramic.2013.06.004

A. Kucukelbir, F. J. Sigworth, and H. D. Tagare, Quantifying the local resolution of cryo-EM density maps, Nature Methods, vol.33, issue.1, pp.63-68, 2014.
DOI : 10.1002/jcc.20084

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1617, 2004.
DOI : 10.1002/jcc.20084

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.
DOI : 10.1107/S0021889803012779

P. V. Konarev, M. V. Petoukhov, V. V. Volkov, and D. I. Svergun, 2.1, a program package for small-angle scattering data analysis, Journal of Applied Crystallography, vol.39, issue.2, pp.277-286, 2006.
DOI : 10.1107/S0021889806004699

A. Guinier, La diffraction des rayons X aux tr??s petits angles : application ?? l'??tude de ph??nom??nes ultramicroscopiques, Annales de Physique, vol.11, issue.12, pp.161-237, 1939.
DOI : 10.1051/anphys/193911120161

D. I. Svergun, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, Journal of Applied Crystallography, vol.25, issue.4, pp.495-503, 1992.
DOI : 10.1107/S0021889892001663

D. Franke and D. I. Svergun, shape determination in small-angle scattering, Journal of Applied Crystallography, vol.42, issue.2, pp.342-346, 2009.
DOI : 10.1107/S0021889809000338

V. V. Volkov and D. I. Svergun, shape determination in small-angle scattering, Journal of Applied Crystallography, vol.36, issue.3, pp.860-864, 2003.
DOI : 10.1107/S0021889803000268

M. B. Kozin and D. I. Svergun, Automated matching of high- and low-resolution structural models, Journal of Applied Crystallography, vol.34, issue.1, pp.33-41, 2001.
DOI : 10.1107/S0021889800014126

M. D. Winn, G. N. Murshudov, and M. Z. Papiz, Macromolecular TLS Refinement in REFMAC at Moderate Resolutions, Methods Enzymol, vol.374, pp.300-321, 2003.
DOI : 10.1016/S0076-6879(03)74014-2

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, issue.3, pp.774-797, 2007.
DOI : 10.1016/j.jmb.2007.05.022

M. S. Chapman, A. Trzynka, and B. K. Chapman, Atomic modeling of cryo-electron microscopy reconstructions ??? Joint refinement of model and imaging parameters, Journal of Structural Biology, vol.182, issue.1, pp.10-21, 2013.
DOI : 10.1016/j.jsb.2013.01.003

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

A. T. Brunger, Version 1.2 of the Crystallography and NMR system, Nature Protocols, vol.50, issue.11, pp.2728-2733, 2007.
DOI : 10.1107/S0108767305093189

M. Bogdanov, W. Zhang, J. Xie, and W. Dowhan, Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAMTM): Application to lipid-specific membrane protein topogenesis, Methods, vol.36, issue.2, pp.148-71, 2005.
DOI : 10.1016/j.ymeth.2004.11.002

E. L. Goemaere, A. Devert, R. Lloubès, and E. Cascales, Movements of the TolR C-terminal Domain Depend on TolQR Ionizable Key Residues and Regulate Activity of the Tol Complex, Journal of Biological Chemistry, vol.178, issue.24, pp.17749-57, 2007.
DOI : 10.1128/jb.178.21.6116-6122.1996

O. References and E. Durand, Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems, J Biol Chem, vol.287, pp.14157-68, 2012.

C. Felisberto-rodrigues, Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar, PLoS Pathogens, vol.15, issue.11, p.1002386, 2011.
DOI : 10.1371/journal.ppat.1002386.s010

URL : https://hal.archives-ouvertes.fr/hal-01458272

D. Du, Structure of the AcrAB???TolC multidrug efflux pump, Nature, vol.308, issue.7501, pp.512-517, 2014.
DOI : 10.1006/jmbi.2001.4633

J. L. Hodgkinson, Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout, Nature Structural & Molecular Biology, vol.18, issue.5, pp.477-85, 2009.
DOI : 10.1016/j.str.2008.11.011

H. H. Low, Structure of a type IV secretion system, Nature, vol.2, issue.7497, pp.550-553, 2014.
DOI : 10.7554/eLife.00792

M. M. Shneider, PAAR-repeat proteins sharpen and diversify the type VI secretion system spike, Nature, vol.215, issue.7462, pp.350-353, 2013.
DOI : 10.1016/S0022-2836(05)80360-2

G. Cacggtatccccgg-kd4-nt-pkd4, C. Tgttcaccg-kd4-nt-pkd4, and C. Gctcatccatgccg-kd4-ct, KD4-Ct-mCherry-3 insertion of mCherry into pKD4 CTTCGAAGCAGCTCCAGCCTACACTTACTTGTACAGCTCGTCCATGCC GCC 5-pETG20-TssM 26Ct insertion of tssM (aa 868-1107) into pETG20A GACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTACT TCCAGGGTACGCCCGCGGCAGAAAGTCTG 3-pETG20-TssM 26Ct insertion of tssM (aa 868-1107) into pETG20A CCACTTTGTACAAGAAAGCTGGGTTTATTCGAAAACCGTTT CCGGCAGAAC RSF-Js-Fwd insertion of StrepII-tagged tssJ into pRSF-Duet ATGGTACATATGATGGCGATTATCGCTGGTAAGGCTGGTGG AATTCCATATGGCGATTATCGCTGGTAAGGCTGGTTACGGTC RSF-Js-Rev insertion of StrepII-tagged tssJ into pRSF-Duet AATCCGCTCGAGTCATTTTTCGAACTGCGGGTGGCTCCATTT ATCCTTCACCGGTAACAGGGTCAGGGTG RSF-flL-Fwd insertion of FLAG-tagged tssL into pRSF-Duet GCAGTTCGAAAAATGACTCGAGAAGGAGATATACCATGGA TTATAAAGATGACGATGACAAGAATAAACCTGTTATCTCCCGGGC RSF-flL-Rev insertion of FLAG-tagged tssL into pRSF-Duet ATGTATATCTCCTTTTATCCCTGCCCGGTAAGCCGTGCCACC TGGTCTG RSF-hM-Fwd insertion of 6×His-tagged tssM into pRSF-Duet GGATAAAAGGAGATATACATATGCATCACCATCATCACCACC ATCACAATAAACTGGCCTGTCTGTCTGGTC RSF-hM-Rev insertion of 6×His-tagged tssM into pRSF-Duet GCGGTTTCTTTACCAGACTCGAGTCAGTCAGTCTCCTCCACG GTATCC For site-directed mutagenesis e A-TssJ C1S Cys1-to-Ser substitution in tssJ TTATCAGGATCCGGTCTGACGCAAAGAGTGGCAGACGGTACGGTATCTGC B-TssJ C1S Cys1-to-Ser substitution in tssJ GTCAGACCGGATCCTGATAACGACAGGGAAAACAACGCAATAAT A-TssM-C727S Cys727-to-Ser substitution in tssM GAATACGCTGGCGGTTCAGGGATCCACTGGCCAGCCCCGGGAAG B-TssM-C727S Cys727-to-Ser substitution in tssM CTTCCCGGGGCTGGCCAGTGGATCCCTGAACCGCCAGCGTATTC A-TssM-T972C Thr972-to-Cys substitution in tssM ATAGCGGATGTGGCGTTCACCTGTGGTAACGCGGGGCTGCATTTTG B-TssM-T972C Thr972-to-Cys substitution in tssM CAAAATGCAGCCCCGCGTTACCACAGGTGAACGCCACATCCGCTAT A-TssM-V989C Val989-to-Cys substitution in tssM CGCCCGGGAACTGCTGCCGGTTGTATGCAGACGACGCTGATAAC B-TssM-V989C Val989-to-Cys substitution in tssM GTTATCAGCGTCGTCTGCATACAACCGGCAGCAGTTCCCGGGCG A-TssM-N1005C Asn1005-to-Cys substitution in tssM GATAATCAGAAACTGATTTATGTTTGTCAGATGCCGGTATGGAAGCG B-TssM-N1005C Asn1005-to-Cys substitution in tssM CGCTTCCATACCGGCATCTGACAAACATAAATCAGTTTCTGATTATC A-TssM-T1019C Thr1019-to-Cys substitution in tssM GATTTACCTGGCCGGCTGATTGTGAAGCACCTGGCGCCAGTTTAAG B-TssM-T1019C Thr1019-to-Cys substitution in tssM CTTAAACTGGCGCCAGGTGCTTCACAATCAGCCGGCCAGGTAAATC A-TssM-T1035C Thr1035-to-Cys substitution in tssM GGGTAAGCACTCAGGCCGTGTCCCGTCAGTATGCAGACCTGCCGGG B-TssM-T1035C Thr1035-to-Cys substitution in tssM CCCGGCAGGTCTGCATACTGACGGGACACGGCCTGAGTGCTTTACCC A-TssM-V1062C Val1062-to-Cys substitution in tssM GACGGAAAGCCGCACCGGTGTTTGCCAGTGGCTGGAGCCTGAG B-TssM-V1062C Val1062-to-Cys substitution in tssM CTCAGGCTCCAGCCACTGGCAAACACCGGTGCGGCTTTCCGTC A-TssM-G1075C Gly1075-to-Cys substitution in tssM CTGAGCTGGCAGGCGCAGGACTGTCGTATGCTGAATTACACACTGC B-TssM-G1075C Gly1075-to-Cys substitution in tssM GCAGTGTGTAATTCAGCATACGACAGTCCTGCGCCTGCCAGCTCAG A-TssM-V1092C Val1092-to-Cys substitution, tssM GGGGAAGGGCCGCTTTGTTTGCTGAAACTCCGCAATTTTG B-TssM-V1092C Val1092-to-Cys substitution in tssM CAAAATTGCGGAGTTTCAGCAAACAAAGCGGCCCTTCCCC A-TssM-S1109C Ser1109-to-Cys substitution in tssM GAAACGGTTTTCGAACTCTGCGGCACGTCAGCGTTTAC B-TssM-S1109C Ser1009-to-Cys substitution in tssM GTAAACGCTGACGTGCCGCAGAGTTCGAAAACCGTTTC a Sequences corresponding to the downstream and upstream regions of the gene to be deleted underlined. b Sequence annealing on the target plasmid underlined. c Restriction sites in Bold. d FLAG