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ARTICLE INFO ABSTRACT

Keywords: Not just detecting but also predicting impairment of a car driver’s operational state is a challenge. This study
Drowsiness aims to determine whether the standard sources of information used to detect drowsiness can also be used to
Prediction

predict when a given drowsiness level will be reached. Moreover, we explore whether adding data such as
driving time and participant information improves the accuracy of detection and prediction of drowsiness.
Twenty-one participants drove a car simulator for 110 min under conditions optimized to induce drowsiness. We
measured physiological and behavioral indicators such as heart rate and variability, respiration rate, head and
eyelid movements (blink duration, frequency and PERCLOS) and recorded driving behavior such as time-to-lane-
crossing, speed, steering wheel angle, position on the lane. Different combinations of this information were
tested against the real state of the driver, namely the ground truth, as defined from video recordings via the
Trained Observer Rating. Two models using artificial neural networks were developed, one to detect the degree
of drowsiness every minute, and the other to predict every minute the time required to reach a particular
drowsiness level (moderately drowsy). The best performance in both detection and prediction is obtained with
behavioral indicators and additional information. The model can detect the drowsiness level with a mean square
error of 0.22 and can predict when a given drowsiness level will be reached with a mean square error of
4.18 min. This study shows that, on a controlled and very monotonous environment conducive to drowsiness in a
driving simulator, the dynamics of driver impairment can be predicted.

Artificial neural network
Physiological measurement
Behavioral measurement

Driving performance and activity

1. Introduction type of impaired operational state: drowsiness. Drowsiness is an inter-

mediate state between alertness and sleep. In this article, we will con-

Driving a car is a complex, multifaceted and potentially risky ac-
tivity requiring full mobilization of physiological and cognitive re-
sources to maintain performance over time. Any loss of these resources
can have dramatic consequences, including accidents. Moreover, the
promise of autonomous vehicles makes it even more important to de-
termine the driver’s operational state. This has recently generated a
large number of studies, both from the fundamental perspective and
with a view to potential applications. The challenge is ambitious: not
only detecting, but also predicting, degradation in the driver’s opera-
tional state.

A driver’s operational state while driving a car involves a complex
set of psychological, physiological and physical parameters. During
driving activities, several factors can be critical: in particular, fatigue
and monotony may cause a loss of attention, drowsiness and even
sleepiness (Dong et al., 2011). The present study focuses on a specific
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sider drowsiness as a continuum, or scalar state. Unfortunately, drow-
siness cannot be recorded directly but has to be estimated, and several
estimation techniques have been proposed in the literature. These
methods can be classified in different categories according to source of
information: subjective assessment, sensorimotor indicators, physiolo-
gical features and driving behavior and performance (Dong et al.,
2011).

In the last few years, the Karolinska Sleepiness Scale (KSS), a 9-
graded Lickert scale (Shahid et al., 2011), has become the most com-
monly employed instrument for the subjective self-assessment of
drowsiness (Alhazmi, 2013; Daza et al., 2014; Friedrichs and Yang,
2010; Krajewski et al., 2009a,b; Lee et al., 2016; Li et al., 2014; Murata
and Naitoh, 2015). Nonetheless, although often used, this method raises
three principal issues. Firstly, the driver’s state can only be assessed
every 15 min, since greater frequency would probably keep the driver
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awake. Secondly, according to Friedrichs and Yang (2010), when the
experiment involves more than three hours of monotonous driving, the
KSS becomes inadequate because drivers have difficulty judging their
alertness. Lastly, subjective assessment clearly does not constitute an
objective measure of drowsiness, and when the task is very mono-
tonous, individual ratings on drowsiness differ from the person’s phy-
siological alertness level (Brown, 1997).

Features extracted from eye and head movements, classified as
sensorimotor indicators, are also promising parameters to detect the
operational state and are now included in many research approaches
(Chen and Ji, 2012; Liu et al., 2009). Video-oculo-graphy (VOG) is
commonly used to study the following features: blink frequency, blink
duration and PERCLOS (PERcentage of eye CLOSure). Changes in these
features are considered under low-level control, offering an easy way to
monitor the activity of the neurovegetative system (Caffier et al., 2003;
Wierwille and Ellsworth, 1994). These features are generally extracted
with image processing algorithms based on eye, head and gaze move-
ment tracking. Thus, the quality of the estimation is highly dependent
on this first signal-processing step.

Physiological features are also frequently used to assess drowsiness
because they are continuously available and could be considered as an
objective, more direct, measure of the functional state. The main re-
cordings of signals related to drowsiness are the electroencephalogram
(EEG), the electrocardiogram (EKG) and electro-dermal activity (EDA)
(Borghini et al., 2014; Dong et al., 2011). The gold standard appears to
be the EEG, the most direct indicator of central nervous system activity
(De Gennaro et al., 2001). However, the EEG is quite intrusive, and
proper installation of an extensive set of electrodes on the participant’s
scalp requires expertise and time. It has been established that when a
change in vigilance is observed, changes on psychophysiological
arousal can be also observed, and these changes can be monitored by
measures of the central and autonomic nervous system activity (Haar-
mann and Boucsein, 2008). Concerning EKG, since heart rate variability
(HRV) is linked to the autonomic nervous system this feature is often
used as an indicator of drowsiness because change on HRV can provide
information about the autonomic nervous system (Elsenbruch et al.,
1999; Lal and Craig, 2001; Riemersma et al., 1977; Stein and Pu, 2012).
Moreover, some studies on drowsiness, vigilance or workload also re-
cord and analyze respiration rate and amplitude (Besson et al., 2013; Ju
et al., 2015; Reimer et al., 2009; Rodriguez Ibafez et al., 2011).

Yet a direct relationship between physiological features and cogni-
tive state is hard to define, because these physiological features vary
with other states (including, but not limited to, emotion, workload,
physical fatigue) or with the context. These variations according to
state also differ from one person to another. Thus, each physiological
indicator has its own limits. Heart rate usually decreases during driving
and when the driver is tired (Lal and Craig, 2001), but the opposite may
also occur (Apparies et al., 1998). Peiris et al. (2005) showed that two
independent experts analyzing EEGs to detect drowsiness may not make
the same assessment for the same participant at the same time. On the
other hand, EDA can be influenced by stress (Healey and Picard, 2005)
and emotions (Rebolledo-Mendez et al., 2014). Taken alone, therefore,
these indicators in themselves cannot be considered as adequate and
exclusive indicators of drowsiness or fatigue.

Driving behavior and performance analyses have the main ad-
vantage of being non-intrusive. Some signals such as pressure on pedals
or car movements are easily available. The standard deviation of car
position relative to lane midline (also named standard deviation of lane
position (SDLP)), and steering wheel movements, are the most common
features used to detect drowsiness (Arnedt et al., 2001; De Valck et al.,
2003; Liu et al., 2009; Philip et al., 2004). However, here again, driving
performance and activity are not specific indicators of drowsiness. For
example, driving performance can decrease with other factors such as
distraction (Tango et al., 2009), or with a decline in attention (Marin-
Lamellet et al., 2003)

Since none of these feature families is consensually considered as a
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specific indicator of drowsiness, various measures are often used
jointly. Such a hybrid approach minimizes the number of false alarms
while maintaining a high rate of recognition (essential for good ac-
ceptance of the system by the human operator, Dong et al., 2011),
mainly because no signal emerges as the reference marker allowing real
time measurement that is both relatively non-invasive and reliable.
Moreover, there is no direct link between all these features and the
“operational state”, which is why methods such as machine learning or
statistical models are used, combining the different measures.

The different algorithms used include k-nearest neighbors (Chauhan
et al.,, 2015), decision trees (Lee et al.,, 2010; Sukanesh and
Vijayprasath, 2013), Bayesian classifiers (Lee and Chung, 2012; Yang
et al., 2010), Support Vector Machines (Bhowmick and Chidanand
Kumar, 2009; Krajewski et al., 2009a,b; Liang et al., 2007; Yeo et al.,
2009), artificial neural networks (ANN) (Bundele and Banerjee, 2009;
Eskandarian et al., 2007; Sayed and Eskandarian, 2001; Samiee et al.,
2014), ensemble methods like random forest (Krajewski et al., 2009a,b;
McDonald et al., 2013; Torkkola et al., 2008; Zhang et al., 2004) and,
more recently, deep learning (Hajinoroozi et al., 2015). Most studies
consider the problem of estimating the driver’s impaired operational
state as a classification problem. Is the driver in an impaired state or
not? Is the driver drowsy or not? However, the evolution of the state of
the driver can also be considered as a regression problem, i.e. the driver
goes through various continuous states, although regression models are
rarely used in the literature (Murata and Naitoh, 2015). Nonlinear
modeling machine learning (such as with ANNs) is also often used. With
these techniques, the model can extract information from noisy data,
and can avoid over-fitting, making it generally more robust (Dong et al.,
2011). Since in the context of driving we expected over-fitting and
noisy data, the present study uses machine-learning techniques based
on artificial neural networks.

Most research focuses on the detection/estimation of an impaired
state, rather than on its prediction, even though they adopt the term
“prediction” (Chen, 2013; Hargutt and Kruger, 2001; Ji et al., 2004;
Verwey and Zaidel, 2000). This is because in machine learning, the
term “prediction” is used to infer the label of an object not seen during
the learning phase. However, some studies try to predict what the
ground truth will be in the subsequent few minutes: the ground truth
was shifted for one epoch (Kaida et al., 2007), while different lags (+1,
+2, +3, +4, +5,+7,+10 min) were tested by (Larue, 2010). Murata
et al. (2016) obtained the highest prediction accuracy using the data
between 20 and 120 s before the prediction. Watson and Zhou (2016)
detect micro-sleep with 96% accuracy and are able to predict, between
15s and 5 min in advance, the time when the next micro-sleep will
occur. However, the time when the first micro-sleep occurs obviously
cannot be predicted by such methods.

As explained above, using a single source of information does not
seem to be an efficient way to accurately assess the state of the driver.
Different sources of information and different models are used in the
literature, and results are hard to generalize away from well-controlled
laboratory conditions. In the present study, we collected information
originating from different sources: physiological, behavioral, and psy-
chological data from the driver, as well as performance information
from the vehicle. The goal of this study is to develop and evaluate a
model with an artificial neural network (ANN), so as to predict when a
given impaired state will be reached in addition to detecting this im-
paired state. We deliberately chose unobtrusive recording techniques
easily applicable in a car. Different datasets using different sources of
information were tested, to determine which kind of information yields
the most powerful model. We put forward two hypotheses. First, we
hypothesized that it is possible to predict when the impaired state will
arise by using the sensorimotor, physiological and performance in-
dicators used to detect drowsiness. Second, we hypothesized that
adding information such as driving time and participant information
will improve the accuracy of the model.



C. Jacobé de Naurois et al.

2. Materials and methods
2.1. Participants

A total of 21 participants were included in the study (mean
age * SD:24.09 = 3.41 years; 11 men and 10 women). On the day of
the experiment, the participants were not allowed to drink alcohol,
coffee or tea. Inclusion criteria were: valid driver’s licence for at least 6
months, no visual correction needed to drive, not susceptible to simu-
lator sickness (as assessed by the Motion Sickness Susceptibility
Questionnaire, Short-form (MSSQ-Short, Golding, 1998) and an Ep-
worth scale score (assessing susceptibility to drowsiness) below 14
(Johns, 1991). A score of below 8 on this scale means the person has no
sleep debt. A score of from 9 to 14 means the person shows signs of
sleepiness, and if the score is above 15, the person shows signs of ex-
cessive sleepiness. Before the experiment, participants were questioned
on their age, their quality of sleep (on a scale of 1-10), their caffeine
consumption (never, rarely, one or two cups per day, more than two
cups per day), driving frequency (occasionally, several times a month, a
week or a day), number of kilometers per year. To assess their circadian
typology, their score on the Horne and Ostberg morning/evening
questionnaire (Horne and Ostberg, 1975) was also noted. All these in-
dicators concerning the participants were later considered as partici-
pant information, and used with a view to improving the performance
of the model.

2.2. Protocol

The participants drove during between 100 and 110 min in a static
driving simulator in an air-conditioned room with temperature control
set at 24° Celsius, after lunchtime. According to the literature about
circadian rhythms, the probability of falling asleep between 02:00 to
06:00 and 14:00 to 16:00 is 3 times higher than at 10:00 or at 19:00,
respectively (Horne and Reyner, 1999). We chose a period corre-
sponding to an intermediate level between a low risk of drowsiness (in
the morning) and the highest risk (end of the night). The road and
traffic were generated with SCANeR Studio’. While driving, data on
driving performance, eyelid and head movements, and physiological
data were recorded using the following hardware and software:
SCANeR Studio® for driving performance at 10 Hz, faceLAB® for sen-
sorimotor signals at 60 Hz, and EKG, pulse plethysmography (PPG),
EDA and Respiration with the Biopac” MP150 system and Acqknow-
ledge” software at 1000 Hz. In this study, EDA was also recorded but
not used due to extensive signal loss. A webcam was placed on top of
the central screen of the simulator to video-record the participants
during the session.

At the beginning of the session, the participants drove along a
highway for roughly 90 min, then turned off the highway and drove for
around 5 min to reach a city. Finally, they drove in an urban environ-
ment for roughly 5 min. During most of the highway stretch, there was
no traffic. Some 2/3 of the way along, 22 cars appeared from the right
of the highway, disappearing a few kilometers later. This sudden ad-
dition of traffic was intended to change the driver’s level of drowsiness.
Rossi et al. (2011) demonstrated that a driver is more susceptible to
sleepiness in a simulator with a monotonous scenario, and during the
afternoon.

2.3. Data analysis and modeling

The level of drowsiness, the so-called ground truth (indeed, the real
state of the driver is not directly accessible and must be evaluated),
determined as a reference in this study is based on subjective assess-
ment by video analysis and independently coded by two raters. Their
evaluation was based on a method proposed by Wierwille and Ellsworth
(1994), which used a scale between 0 and 100. For practical reasons in
relation with the ANN, we decided to use a smaller scale (from O to 4
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with a step of 0.5) as proposed by Belz et al. (2001). This ground-truth
determination method was chosen because the assessment by video
coding is reliable and allows a comprehensive assessment of the driver
state. Other methods, such as questionnaires (e.g. KSS), reaction time to
a double task or even EEG are quite invasive and may disturb the driver
and thus influence his/her state. However, video analysis is long and
requires several observers with a certain level of training. In order to be
more reliable, this method can use criteria and rating scale as a basis for
different observers. The ORD relies on a continuous scale from “alert”
to “extremely drowsy” with a list of criteria which can be observable in
the driver, characteristics of a drowsy driver (Wierwille and Ellsworth,
1994).The two trained raters evaluated each minute of video and rated
each segment on a scale ranging from 0 (alert) to 4 (extremely drowsy).
The mean of the two raters was taken as the drowsiness level. Inter-
rater reliability was computed with the Pearson's linear correlation
(R = 0.71 and p = 0.00).

In order to synchronize data obtained at various sampling fre-
quencies, we averaged data over periods of 1 min. Thus, the final
sampling rate is 1/min for each feature, including ground truth.

The modeling process can be divided into two phases. First, one
Artificial Neural Network (ANN) detects the level of drowsiness from a
predetermined set of features (detection model). This ANN is used to
detect the impaired state (level of drowsiness). Second, if drowsiness is
under 1.5, a second ANN predicts (in min) when it will reach 1.5 and
gives this time as its output (for instance when the level is reached),
otherwise its output is 0 (prediction model). The threshold was set at
1.5 for the following reason. McDonald et al. (2013) defined the limit
between “not drowsy” and “drowsy” at a level between 1 and 2 (O or 1,
not drowsy; 2, 3, 4: moderately, very or extremely drowsy). We chose
the level of 1.5 as a threshold for defining the impaired state because
this level means that at a given time, one of the two raters has evaluated
the state of the participant as moderately drowsy (level 2) while the
other evaluated the state as 1. These two ANNs were trained in-
dependently.

The neural network toolbox (Beale et al., 1992) of Matlab R2013a
was used to create the ANNs. Two feedforward neural networks were
used with 2 hidden layers, and a back propagation training method was
applied using the Levenberg-Marquardt algorithm (Levenberg, 1944).
The error was validated by ten-fold cross-validation and a search grid.
The performance function used for learning was the mean squared error
(the average squared error between the network outputs and the target
output). To avoid overfitting, the total dataset was distributed in a
training sub-dataset (70% of the total set, to learn the network’s node
weights), a validation sub-set (15%: to stop learning and avoid over-
training) and a testing sub-set (15%: to evaluate the model’s ability to
work on previously unseen data. This property is also called ‘general-
ization’).

In addition, three other metrics were used to evaluate the model:
first, the percentage of numbers of absolute errors below a threshold
(0.5 for detection of degree of impairment and 5 min for predictions
and for the testing dataset: the higher this metric, the better the model
performs); second, the range of errors containing 95% of the values;
and third, the coefficient R of the correlation between outputs and
targets.

Driving performance and driving behavior indicators (car dataset)
used in the model were: lateral distance relative to the midline, time-to-
line-crossing (Bergasa et al., 2006), steering wheel angle, accelerator
pedal angle, shift relative to the lateral line, speed, and number of line
crossings. Physiological features used in the model (physiological da-
taset) were the heart rate and its variability, and the respiration rate
and its variability. Sensorimotor features (behavioral dataset) extracted
from FaceLab data were blink duration and its frequency, PERCLOS,
head movement in translation and rotation, and saccade frequency.
Participant information recorded consisted of score on circadian ty-
pology, score on Epworth scale, sleep quality, driving frequency,
number of cups of coffee a day and age. Driving time (the time elapsed



C. Jacobé de Naurois et al.

Table 1
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All the variables (grouped by source of information, in column) computed for each participant for each minute, used as input for ANNSs.

Physiological measurements

Behavioral measurements

Car measurements

HR: Heart Rate (average and standard deviation)
(beat/min)

Suie: HR signal Very Low Frequency Power (0.0-
0.04 Hz)

Si¢: HR signal Low Frequency Power (0.04-0.15 Hz)

She: HR signal High Frequency Power (0.15-0.4 Hz)

Svnet HR signal Very High Frequency Power (0.4-
3.0 Hz)

Sympathetic ratio (S;¢/(Svir + Sir + She)

Vagal ratio (Sp¢/(Svir + Sir + Sne)
Sympathetic-vagal ratio (S;¢/Sne)

Respiration Rate (average and standard deviation)
(per minute)

Blink duration (average and standard deviation)

Blink frequency (average and standard deviation)
(per minute)

PERCLOS (average and standard deviation) (% of
eye-closure time)

Head position x (average and standard deviation)
Head position y (mean and standard deviation)

Head position z (average and standard deviation)

Head rotation x (average and standard deviation)
Head rotation y (average and standard deviation)

Head rotation z (average and standard deviation)
Saccade frequency (mean and standard deviation)

Lateral distance from the closest lane and the center of the car in m

(average and standard deviation)

Time to lane crossing (average and standard deviation)

Steering angle (average and standard deviation)

Steering angle velocity (average and standard deviation)

Steering entropy (computed from steering angle)

Number of direction change (0-crossings) per minute (computed

from steering angle)

Accelerator pedal angle (average and standard deviation)
Lateral shift of the vehicle center relative to the lane center (average

and standard deviation)

Vehicle speed (km/h) (average and standard deviation)

Number of out-the road per minute

(per minute)

since the beginning of the driving session, in minutes) was also used as
an input feature for the model (see Table 1). In an attempt to rebase
individual differences, we subtracted from each signal the mean of the
first five minutes of this signal, so that the signal represents variation
from an initial state. To optimize learning, each feature was normalized
such that minimum and maximum values lie within [—1;1].

3. Results

The ANNs were trained 16 times (4 X 2 X 2) with different data-
sets. Each dataset results from the combination of the following: the
three sources of information tested alone or all together (thus 4 com-
binations), with or without elapsed time (2 cases) and with or without
information about the participants (2 cases). The Tables 2 and 3 present
the performance obtained with each of the 16 datasets. In this section,
the results will be presented with the driving time (labeled with ‘1’ in
tables) and without (labeled with ‘0’ in Tables 2 and 3), with the in-
formation about the participant (labeled with ‘1’ in tables) and without
(labeled with ‘0’ in Tables 2 and 3). The grouping was decided ac-
cording to how these variables were recorded in our experiment (and
possibly in a real car), that is to say with which equipment. Indeed, the
vehicle information can be recorded from the vehicle’s Controller Area
network (in our experiment with SCANeR® software), the behavioral
measurements with a camera and a specific image processing system (in
our experiment with faceLAB") and physiological measurements with

Table 2

physiological sensors and an A/D system (in our experiment with
Biopacw, in a real car it could be with a smart-watch).

3.1. Detection

In this section, we present model performance in detecting drow-
siness level, as defined by the ORD scale (from 0 to 4, see Methods
section). The error is the difference between the real state (as given by
the subjective evaluation, the so-called ground truth) and the output,
squared and averaged over epochs to provide the mean squared error of
the trained model.

From an absolute point of view, the dataset configuration providing
the best performance (lowest mean square error) in training the model
contains driving time, participant information and behavioral features
(# in Table 2). With this dataset, the mean square error is 0.22 *= 0.02
and more than 80% of the absolute value of the error of the testing data
is under 0.5 (less than one-half of a state level, as defined by the ORD
scale). Ninety-five percent of the absolute value of the error is under
0.87. In other words, the model is off by less than one drowsiness level
on our scale, in 95% of cases. Performance is similar when car in-
formation is included. The mean square error is 0.23 = 0.06. More
than 86.34% of the absolute value of the error of the testing data is
under 0.5. Ninety-five percent of the absolute value of the error is under
0.73, i.e. in 95% of cases the model is off by less than one drowsiness
level on our scale.

Model performance in detecting drowsiness level for the testing dataset: mean square error (MSE), standard deviation (STD), according to dataset used, with (1) or without (0) driving
time, with (1) or without (0) participant information. The worst performance (highest MSE) is highlighted in bold and with a * while the best performance (lowest MSE) is highlighted in

bold and with a #.

Driving Time Participant information Dataset Source MSE STD |Error [95% % Error < 0.5
0 0 Testing All 0.43 0.04 1.16 0.63
0 0 Testing Behavioral 0.42 0.02 1.16 0.64
0 0 Testing Car 0.69 0.04 1.48 0.50
0 0 Testing Physiological 0.81* 0.05 1.51 0.43
0 1 Testing All 0.41 0.04 1.10 0.62
0 1 Testing Behavioral 0.39 0.04 1.14 0.69
0 1 Testing Car 0.62 0.03 1.34 0.54
0 1 Testing Physiological 0.76 0.03 1.52 0.44
1 0 Testing All 0.27 0.02 0.91 0.80
1 0 Testing Behavioral 0.23 0.02 0.80 0.83
1 0 Testing Car 0.40 0.05 1.20 0.66
1 0 Testing Physiological 0.38 0.05 1.06 0.70
1 1 Testing All 0.24 0.02 0.84 0.81
1 1 Testing Behavioral 0.22# 0.02 0.87 0.80
1 1 Testing Car 0.23 0.06 0.73 0.86
1 1 Testing Physiological 0.29 0.07 0.75 0.82
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Table 3
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Performance of the model in predicting drowsiness level with the testing dataset: mean square error (MSE), standard deviation (STD), according to whether dataset is used with (1) or
without driving time (0), participant information, and source of recorded information. The * symbol indicates the worst performance and the # symbol the best performance. The best and

worst performance are also higlighted in bold.

Driving Time Participant information Dataset Source MSE STD |Error |95% % Error < 5
0 0 Testing All 33.64 7.63 9.29 0.79
0 0 Testing Behavioral 23.61 3.15 8.12 0.86
0 0 Testing Car 60.09* 6.19 13.12 0.73
0 0 Testing Physiological 43.77 6.24 11.47 0.74
0 1 Testing All 28.26 2.82 8.79 0.82
0 1 Testing Behavioral 22.83 4.03 7.98 0.89
0 1 Testing Car 50.22 8.84 12.11 0.73
0 1 Testing Physiological 41.82 4.11 11.83 0.74
1 0 Testing All 10.64 3.39 4.26 0.97
1 0 Testing Behavioral 5.46 1.50 2.92 0.99
1 0 Testing Car 31.14 10.73 6.25 0.93
1 0 Testing Physiological 15.97 1.70 7.01 0.89
1 1 Testing All 7.69 2.17 3.12 0.98
1 1 Testing Behavioral 4.18# 1.17 1.98 0.99
1 1 Testing Car 4.67 1.33 2.43 0.99
1 1 Testing Physiological 5.51 1.84 2.62 0.98

When neither driving time nor participant information is used (line
0-0 in Table 2), or when only one of these is used (0-1 or 1-0), the model
performs better with all datasets used together or with the behavioral
dataset used alone; performance is slightly worse with the physiological
or car datasets used alone. As stated above, the model performs best, for
each dataset or for all three datasets used together, when both driving
time and participant information are included (1-1).

Figs. 1 and 2 present, respectively with (Fig. 1) and without (Fig. 2)
driving time and participant information, the frequency histogram of
distribution of error (left panel, A) and the correlation (right panel, B)
between real state (target, horizontal axis) and estimated state, the
output of the ANN (vertical axis). The model is trained with behavioral
data in Fig. 1 and with all datasets in Fig. 2; thus, Fig. 1 illustrates the
best, and Fig. 2 the worst, performance for the training, validation and
testing datasets. Linear regressions were applied to the output of the
model to correlate them with the ground truth. With a perfect model,
all data points would be on the diagonal line of the correlation graph.
Fig. 1 shows that, for each of the three datasets, simulated values are
well correlated with expected values (ground truth). The R-values are
actually very close to unity (0.93, 0.91, 0.91 respectively for the
training, validation and testing datasets). Moreover, the slopes of the
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regression lines are very close to unity (0.87, 0.88, 0.88 respectively for
the training, validation and testing datasets) and the intercepts are close
to zero (0.17 for all three datasets). Errors are calculated, at each 1 min
epoch, as the difference between the output of the model and the
ground truth. The graph on the left of Fig. 1 shows a peak at 0.05,
meaning that most of the errors are close to 0. Also, more than 95% of
the instances had an error of between —1.16 and 1.16. In Fig. 2, the
correlations between output and target are still good but there is greater
variability (R = 0.87, 0.74, 0.78 respectively for the training, valida-
tion and testing datasets). The model used for the results presented in
Fig. 2 (behavior, physiology and car) is less accurate than the model
which results are presented on Fig. 1 (behavior, elapsed time and
participant information). As for errors, the graph on the left shows a
single but broader peak at 0.2 and —0.02, also meaning that most of the
errors are close to 0.

3.2. Prediction
This section presents the performance of the second model, aimed at
predicting when a driver will reach a given drowsiness level (here 1.5).

The error, for each epoch, is the difference between the time remaining
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from the current epoch before the target level is really reached (as per
the subjective evaluation) and the time predicted by the trained model
(squared and averaged over epochs to provide the mean squared error).

The best performance is achieved with a combination of driving
time, participant information and the behavioral dataset. The mean
square error is 4.18 * 1.17 min. For 95% of the testing data, the ab-
solute value of error is under 2 min and more than 99% of the absolute
value of error is under 5 min. Similar, but not higher, accuracy is
achieved with the car and physiological datasets (4.67 + 1.33 and
5.51 = 1.84). Ninety-five percent of the absolute value of error is
under 2.43 and 2.62, respectively. For more than 97% of the testing
data, the absolute value of error is under 5 min.

The worst model performance in predicting drowsiness is with the
car dataset alone (60.09 + 6.19 min). Performance improves with the
addition of participant information (50.21 * 8.84 min), or of driving
time (31.14 * 10.72 min). The model becomes very accurate when
both driving time and participant information are included with the car
dataset (4.67 = 1.33 min).

For each source of information (all, behavioral, car and physiolo-
gical datasets), the model is more accurate when both driving time and
participant information are included in the dataset than with either
driving time or participant information alone, or with no additional
information.

Figs. 3 and 4 present the frequency histogram of distribution of
errors (left panel) and the correlation between real time (target, hor-
izontal axis) and estimated time (vertical axis) of appearance of
drowsiness, respectively with (Fig. 3) and without (Fig. 4) driving time
and participant information, The model is trained with behavioral data
in Fig. 3 and with all datasets in Fig. 4, so that Fig. 3 illustrates the best,
and Fig. 4 the worst, performance. On Fig. 3, the graph on the right
shows that the relation between target and output is very precise, data
are close to the diagonal (very high R, better than 0.98 for the training,
validation and testing datasets, the slopes are better than 0.99). On the
left part of Fig. 3, the main peak is at 0.3, meaning that the model has
an error inferior at 0.3.

4. Discussion

Detecting impairment of a driver’s operational state is a major safety
issue, addressed in numerous studies. While recent car models go some
way towards providing this detection capacity, it is clear that recent

technological developments are not sufficient to meet the challenge of
safety in modern vehicles. Predicting the degree of driver impairment,
and when it will occur, remain important research objectives requiring
more complex treatment of heterogeneous information from diverse
sources. The objective of this study was to assess whether the time of
occurrence of a given state of drowsiness could be predicted by using
ANN models (one to detect drowsiness and a second one to predict
drowsiness).

Overall, our results demonstrate that, using an ANN trained with the
same information used to detect drowsiness, it is possible to predict
when a driver’s impairment will appear to an accuracy of approxi-
mately 5 min. Moreover, to further improve accuracy, external in-
formation such as driving time or a driver profile can be added to the
model. In his study, Larue (2010) accurately predicted a driver’s de-
creased vigilance up to five minutes in advance, and up to 10 min in
advance with 70% to 80% accuracy. Under quite different conditions,
and with different types of information, our model seems to be more
accurate. In our worst case, for 95% of the test dataset, the model can
predict when the impairment will appear to within 13.11 min. In our
best case, for 95% of the test dataset, the model can predict the im-
pairment to within 1.97 min.

As explained in the results section, model performance, both on
detecting a drowsiness level and on predicting when this level will be
reached, varies considerably according to the datasets used to train the
model. This raises the question of the relevance of using physiological
signals, behavioral features and driving activity, and of the respective
roles of these different datasets in model performance. An important
point highlighted by our results is how temporal (driving time) and
idiosyncratic (participant information) data impact model performance.
The limitations of our model with regard to generalization (i.e. the
ability of the model to accurately treat previously unseen data), and
from a more general point of view, inter-individual variability, will also
be discussed.

4.1. Dataset comparison: behavioral/physiological/car

Our objective was to use the same information both to detect
drowsiness and to predict the time when a given drowsiness level would
be reached. Interestingly, when trained with all datasets, either singly
or in combination, the model gave satisfactory results. The dataset
giving the best performance is the behavioral dataset (followed by the
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Fig. 3. frequency histogram of error distribution (left panel) and correlation (right panel) between real and estimated times, for a model trained with behavioral dataset, driving time and

participant information.

physiological dataset and finally the car dataset), both in detecting the
degree of drowsiness and in predicting when a given drowsiness level
will occur. Similar results were previously reported. Samiee et al.
(2014) showed that information about blinks leads to highly accurate
detection (90.74% detection of a drowsy state), while lateral deviation
of the car and steering wheel angle provide 85.37% and 87.22% ac-
curacy, respectively. However, when all three sources of information
(blinking, lateral position and steering angle) were used together, ac-
curacy increased to 94.69%, although this was not borne out by our
study. As in our study, Daza et al. (2014) obtained better results with
features extracted from eyelid movement (such as PERCLOS) than with
features extracted from driving behavior. In the literature, HRV data
showed a correlation with drowsiness (Elsenbruch et al., 1999; Lal and
Craig, 2001; Stein and Pu, 2012). Yet our model gave better results with
ocular and head parameters than with physiological variables: the ORD
scale showed a stronger correlation with the ocular parameters than
with physiological variables such as EKG and Respiration (Rost et al.,
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2015). Wang and Xu (2016) consider eye features as the prime input for
detection of drowsiness. However, since they are usually computed by
image processing, these features cannot be considered fully reliable.
Although techniques have progressed considerably in recent years,
detecting face and gaze movements remains tricky in complex situa-
tions (for example, subjects with glasses, variable or low light condi-
tions, Benoit and Caplier, 2005; Friedrichs and Yang, 2010).

Our behavioral, physiological and, to a lesser extent, car datasets led
to the best model performance. With all sources of information in the
same neural network, performance could be expected to improve be-
cause the neural network can better learn dependencies between dif-
ferent kinds of information. Unfortunately, our results do not bear this
out. A single ANN-based model may not be the best way to take ad-
vantage of the dependencies between the different sources of in-
formation. An alternative, inspired by Samiee et al. (2014), might be to
linearly combine the outputs of three ANNs, each trained with a dif-
ferent dataset: car, physiological or behavioral.
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Surprisingly, other information often included in the literature ap-
pears less relevant here. For instance, car deviations relative to the road
and line crossings are often considered as signs of drowsiness (Philip
et al., 2005). Yet our results unexpectedly show that a model trained
with the car dataset alone is less accurate than models trained with
other datasets. This may be due to the fact that driving activity and
performance are non-linearly correlated with degree of drowsiness.
Thus, they may be more useful to detect a critical state (very or ex-
tremely drowsy) than to assess a monotonous evolution of the driver’s
state (alert, slightly, moderately, very, extremely drowsy). Ingre et al.
(2006) showed that the SDLP score (Standard Deviation of the Lateral
Position) dramatically increased with a subjective measure of drowsi-
ness (KSS scale: from 1 to 9). Since our postulate was to consider
drowsiness as a continuous variable, the car dataset was obviously not
the most appropriate for training our model.

Finally, a potential bias in detection might be suspected from the
fact that the ground truth is based on subjective evaluations from video
recordings of the participant’s motor behavior, which could be thought
to explain the superior performance of the behavioral dataset.
However, it is worth noting that these features are consensually de-
scribed in the literature as the most objective and pertinent indicators
of drowsiness. It is therefore difficult to conclude on whether the high
performance of a model trained with behavioral data is due to the way
ground truth is set or to the greater relevance of this particular set of
data.

4.2. The role of driving time

Driving time (the time elapsed since the beginning of the driving
session, in minutes) plays an important role here, greatly improving the
performance of the model. Obviously, the longer a driver drives under
monotonous conditions, the greater the probability of being drowsy
(Philip et al., 1999a,b). This is why drivers travelling on highways are
often reminded to take a rest break after two hours of driving (Philip
et al., 1999a,b). Thus, the model can be considered to have learned a
linear relationship between elapsed time and the remaining time before
the occurrence of the critical state (naturally until the critical level is
reached, after that the predicted time will be 0). It could therefore be
deduced that driving time is sufficient per se to predict impairment of
the driver’s state. However, our experiment showed that participants
reached a critical level at different times after the session began. Some
participants reached the critical state as early as 10 min after the be-
ginning of the driving session, and others after around 30 min. More-
over, we observed that some participants could be drowsy at a parti-
cular time and subsequently become alert again. It can therefore be
concluded that there is not a simple linear relationship between driving
time and the time before a given drowsiness level is reached. To de-
termine the real weight of driving time, we consecutively trained two
models with this sole feature, and then tested their detection (model 1)
and prediction (model 2) capabilities. For the detection of the drowsi-
ness level, the mean square error was 0.47 *+ 0.54. For the prediction
of the time before the drowsiness level is reached, the mean square
error in the generalization phase was 17.77 *+ 2.15 min. Interestingly,
we find that the models trained with driving time alone perform better
than models trained with car or physiological datasets alone, but worse
than models trained with behavioral dataset alone or with behavioral,
car and physiological datasets combined. This shows that, while driving
time is a good predictor of drowsiness, it is not the best.

Secondly, a model based on driving time alone would be unable to
account for wakening events, such as a rest period or a traffic change.
For instance, caffeine is reported to reverse time-on-task degradation of
performance on sleep-deprived participants (Wesensten et al., 2004). A
short nap or rest may counteract drowsiness (Anund et al., 2015). Thus,
if the driver drinks a cup of coffee or takes a rest, a model based on
driving time alone would need to be reinitialized. How and when this
reset should be performed is an important question, requiring further
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experiments.
4.3. Generalization and inter-individual variability

Generalization is highly relevant in an industrial context. However,
we cannot prove that our model can be generalized to new participants
whose data have never been used to train the model. Inter-individual
variability (sensitivity to drowsiness, behavioral, physiological or psy-
chological idiosyncrasies) may be a limiting factor for generalization
(how the model behaves with previously unseen data) and transfer
(how knowledge acquired in a given domain can be adapted to another
domain). In our study, the data subset used for the tests (e.g. to evaluate
the model’s ability to treat previously unseen data, also called the
‘generalization process’) was randomly chosen among the full set of
data from all subjects. Thus, at this stage, it is not possible to determine
whether the algorithm would perform well with the full dataset for a
given subject whose data were not used to train the model. To do so
would require multiple replications of the experiment under the same
conditions over a longer period.

It is a major challenge to find a general model which can be trained
with a limited number of drivers and then applied to other drivers
(Karrer et al., 2004), due to inter-individual variability. Many studies
(for a review see Liu et al., 2009) reported great variability in how
drowsiness affects performance and physiological parameters in gen-
eral. It is now recognized that neurobehavioral and cognitive perfor-
mances vary considerably from one individual to another (Van Dongen
et al., 2004a, 2004b). For instance, Philip et al. (2004) studied cognitive
performance after sleep deprivation. They found that performance was
highly impaired, but more so in elderly participants than in younger
participants. In car driving, according to Ingre et al. (2006), there is
extensive inter-individual variability in driving behavior and eye be-
havior: under similar conditions, individuals can present differing
profiles of drowsiness evolution over time, and for a given self-declared
drowsiness level, markers such as eye blink duration also vary con-
siderably. In our study, participant information (like age or circadian
activity) significantly improved accuracy both in detection and in
prediction. These results point in the same direction as those of Wang
and Xu (2016), who found that including individual factors improved
accuracy. Sensitivity to drowsiness is an idiosyncratic factor which may
also impact generalization. According to Van Dongen et al. (2003), the
high variability in individual performance following sleep deprivation
can be explained by the cognitive performance observed when the in-
dividual is not sleep-deprived. Van Dongen et al. (2003) also showed
that individuals probably differ in their vulnerability to sleep depriva-
tion, and that this is partially predictable from individual cognitive
performance without deprivation, i.e. from the individual cognitive
profile. Indeed, in driving simulator studies, drowsiness is often ob-
served to develop in differing ways (Thiffault and Bergeron, 2003).
Situational and personality factors, sleeping habits and driving history
can contribute to the understanding of why some people fall asleep at
the wheel while others do not. This points to the need to take into
account drivers’ traits or profiles when calibrating systems for the de-
tection and prediction of driver fatigue.

5. Conclusion

In this study, different ANNs were used either to detect a drowsiness
level or to predict when a driver’s state will become impaired. The best
models (those whose rates of successful detection or prediction are the
highest) used information about eyelid closure, gaze and head move-
ments and driving time. Performance on prediction is very promising,
since the model can predict to within 5 min when the driver’s state will
become impaired. Moreover, modeling drowsiness as a continuum can
lead to more precise detection systems offering refined results beyond
simply detecting whether the driver is alert or drowsy. Future perfor-
mance improvements could be achieved by using recurrent neural
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networks or dynamic neural networks to add temporality to the model,
or adding other features like context information (traffic, type of road,
weather etc.). These factors can influence the driver’s state. However,
as eyelid and head movements are difficult to record in a real car, the
focus should be on improving a model using only driving performance,
driving behavior (based on data provided by sensors in the car) and
physiological measurements. Finally, a larger and more realistic dataset
(far more subjects (wider range for age for example)), recorded in real,
on-road, conditions (different times of the day for example) would be
required to validate these models.
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