M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, and J. J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.1, issue.7388, pp.182-685, 2012.
DOI : 10.1038/nprot.2006.432

URL : http://europepmc.org/articles/pmc3527127?pdf=render

M. Leroux, Quantitative single-cell characterization of bacterial interactions 687 reveals type VI secretion is a double-edged sword, Proceedings of the National 688

M. Basler, B. T. Ho, and J. J. Mekalanos, Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions, Cell, vol.152, issue.4, pp.884-894, 2013.
DOI : 10.1016/j.cell.2013.01.042

URL : https://doi.org/10.1016/j.cell.2013.01.042

Y. R. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging Type VI Secretion-Mediated Bacterial Killing, Cell Reports, vol.3, issue.1, pp.36-41
DOI : 10.1016/j.celrep.2012.11.027

URL : https://hal.archives-ouvertes.fr/hal-01458227

N. S. Lossi, R. Dajani, P. Freemont, and A. Filloux, Structure-function analysis of 697

. Hsif, a gp25-like component of the type VI secretion system, in Pseudomonas 698 aeruginosa, Microbiology, vol.157, pp.3292-3305, 2011.

S. Planamente, TssA forms a gp6???like ring attached to the type VI secretion sheath, The EMBO Journal, vol.35, issue.15, pp.1613-162710, 2016.
DOI : 10.15252/embj.201694024

N. M. Taylor, Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.372, issue.7603, pp.346-35210, 2016.
DOI : 10.1016/j.jmb.2007.05.022

P. G. Leiman, Morphogenesis of the T4 tail and tail fibers, Virology Journal, vol.7, issue.1, pp.10-1186, 2010.
DOI : 10.1186/1743-422X-7-355

P. G. Leiman and M. M. Shneider, Contractile Tail Machines of Bacteriophages, p.706
DOI : 10.1007/978-1-4614-0980-9_5

A. Zoued, TssK is a trimeric cytoplasmic protein interacting with components of 709 both phage-like and membrane anchoring complexes of the Type VI secretion system, p.710

A. Desmyter, S. Spinelli, A. Roussel, and C. Cambillau, Camelid nanobodies: killing two birds with one stone, Current Opinion in Structural Biology, vol.32, pp.1-8, 2015.
DOI : 10.1016/j.sbi.2015.01.001

URL : https://hal.archives-ouvertes.fr/hal-01439032

V. S. Nguyen, Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody, PLOS ONE, vol.3, issue.3, p.719
DOI : 10.1371/journal.pone.0122187.t002

URL : https://hal.archives-ouvertes.fr/hal-01217205

V. S. Nguyen, Production, crystallization and X-ray diffraction analysis of a 721 complex between a fragment of the TssM T6SS protein and a camelid nanobody, Acta 722 crystallographica. Section F, Structural biology communications 71, pp.266-27110, 2015.

A. Desmyter, Three Camelid VHH domains in complex with porcine pancreatic 725 alpha-amylase -Inhibition and versatility of binding topology, Journal of Biological, p.726

S. Spinelli, M. Tegoni, L. Frenken, C. Van-vliet, and C. Cambillau, Lateral recognition of a dye hapten by a llama VHH domain, Journal of Molecular Biology, vol.311, issue.1, pp.123-1294856, 2001.
DOI : 10.1006/jmbi.2001.4856

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, JPred4: a protein secondary structure prediction server, Nucleic Acids Research, vol.18, issue.Suppl. 1, pp.389-394, 2015.
DOI : 10.1093/bioinformatics/btp033

URL : https://academic.oup.com/nar/article-pdf/43/W1/W389/7476047/gkv332.pdf

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-161210, 2004.
DOI : 10.1002/jcc.20084

URL : http://www.cgl.ucsf.edu/home/tef/pubs/chimera.pdf

C. Farenc, Molecular insights on the recognition of a Lactococcus lactis cell wall 736 pellicle by phage 1358 receptor binding protein, Journal of virology, vol.737, pp.10-1128, 2014.

S. Spinelli, Lactococcal bacteriophage p2 receptor-binding protein structure 739 suggests a common ancestor gene with bacterial and mammalian viruses, Nature, vol.740, issue.13, pp.85-89, 2006.
DOI : 10.1038/nsmb1029

S. P. Ray, Structural and biochemical characterization of human 742

M. G. Casabona, Y. Vandenbrouck, I. Attree, and Y. Coute, PAO1 inner membrane, PROTEOMICS, vol.38, issue.16, pp.2419-2423201200565, 2013.
DOI : 10.1093/nar/gkp964

. Mu, Defining the conserved core components of contractile-tailed phages and 749 related bacterial systems, Proceedings of the National Academy of Sciences of the, p.750

S. Spinelli, Modular structure of the receptor binding proteins of Lactococcus 752

. Phages, The RBP structure of the temperate phage TP901-1. The Journal of 753 biological chemistry 281, pp.14256-14262, 2006.

S. R. Casjens and I. J. Molineux, Short noncontractile tail machines: adsorption and 755 DNA delivery by podoviruses Advances in experimental medicine and biology 726, pp.143-179, 2012.
DOI : 10.1007/978-1-4614-0980-9_7

S. Spinelli, D. Veesler, C. Bebeacua, and C. Cambillau, Structures and host-adhesion 758 mechanisms of lactococcal siphophages, Frontiers in microbiology, vol.5, issue.3, pp.759-769, 2014.

G. Sciara, Structure of lactococcal phage p2 baseplate and its mechanism of 761 activation, Proceedings of the National Academy of Sciences of the United States of 762

A. Zoued, Structure-Function Analysis of the TssL Cytoplasmic Domain 764

F. Van-den-ent and J. Lowe, RF cloning: A restriction-free method for inserting target genes into plasmids, Journal of Biochemical and Biophysical Methods, vol.67, issue.1, pp.67-74008, 2006.
DOI : 10.1016/j.jbbm.2005.12.008

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system 770 based on a reconstituted signal transduction pathway, Proceedings of the National 771

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate 773
DOI : 10.1016/j.ymeth.2012.07.018

E. Pardon, A general protocol for the generation of Nanobodies for structural biology, Nature Protocols, vol.12, issue.3, pp.674-693039, 2014.
DOI : 10.1021/ac901651r

A. Desmyter, Viral infection modulation and neutralization by camelid 781 nanobodies, Proceedings of the National Academy of Sciences of the United States of 782
DOI : 10.1073/pnas.1301336110

URL : http://www.pnas.org/content/110/15/E1371.full.pdf

A. Vagin and A. Teplyakov, Molecular replacement with MOLREP, Acta Crystallogr, p.786

P. A. Karplus and K. Diederichs, Linking Crystallographic Model and Data Quality, Science, vol.65, issue.Pt 2, p.794
DOI : 10.1107/S0907444908037591

URL : http://europepmc.org/articles/pmc3457925?pdf=render

T. A. Pape and T. , HKL2MAP: a graphical user interface for macromolecular phasing 798 with SHELX programs, J. Applied Crystallogr, vol.37, pp.853-844, 2004.
DOI : 10.1107/s0021889804018047

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-67410, 2007.
DOI : 10.1107/S0021889807021206

K. Cowtan, Recent developments in classical density modification, Acta Crystallographica Section D Biological Crystallography, vol.277, issue.4, p.802
DOI : 10.1107/S090744490903947X/ba5136sup1.txt

URL : https://doi.org/10.1107/s090744490903947x