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 2 

ABSTRACT 1 

  2 

The Type VI secretion system (T6SS) is a multiprotein and mosaic apparatus that delivers 3 

protein effectors into prokaryotic or eukaryotic cells. Recent data on the enteroaggregative 4 

Escherichia coli (EAEC) T6SS have provided evidence that the TssA protein is a key 5 

component during T6SS biogenesis. The T6SS comprises a trans-envelope complex that 6 

docks the baseplate, a cytoplasmic complex that represents the assembly platform for the tail. 7 

The T6SS tail is structurally, evolutionarily and functionally similar to the contractile tails of 8 

bacteriophages. We have shown that TssA docks to the membrane complex, recruits the 9 

baseplate complex and initiates and coordinates the polymerization of the inner tube with that 10 

of the sheath. Here, we review these recent findings, discuss the variations within TssA-like 11 

proteins, speculate on the role of EAEC TssA in T6SS biogenesis and propose future research 12 

perspectives. 13 

 14 

15 
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Introduction 1 

The Type VI secretion system (T6SS) is a multiprotein machine widespread in 2 

Proteobacteria and Bacteroidetes and responsible for the transport and delivery of toxins into 3 

recipient cells (Figure 1) [1-3]. The T6SS targets both eukaryotic and prokaryotic cells and 4 

therefore participates to pathogenesis towards plant, animal or human cells, as well as to inter-5 

bacterial competition [4-10]. Indeed, the T6SS anti-bacterial activity is responsible for re-6 

shaping bacterial communities providing growth and colonization advantages [6,11-18]. The 7 

effectors are deleterious enzymes (peptidoglycan hydrolases, phospholipases, DNases, etc) 8 

that are delivered into recipient cells as cargo by binding to components of the tail tube/spike 9 

complex, which is propelled by a contractile mechanism [6-8,19-21]. This tail structure is 10 

evolutionarily, structurally and functionally related to tails of contractile bacteriophages or of 11 

R-pyocins [22-28]. It is composed of an inner tube made by stacked Hcp hexamers and tipped 12 

by the VgrG trimeric spike complex (Figure 1B)[29,30]. The tail is surrounded by a sheath, 13 

made of TssB and TssC subunits, that is assembled in an extended conformation that stores 14 

mechanical energy necessary for its contraction (Figure 1B)[31-33]. The assembly of the 15 

T6SS tail is controlled by the baseplate, a structure composed of the VgrG spike and the TssE, 16 

TssF, TssG and TssK proteins [34-36]. The baseplate is anchored to the TssJLM trans-17 

envelope complex, the first T6SS element to be assembled (Figure 1B) [35,37-42]. The 18 

TssJLM membrane complex therefore constitutes the docking station for the tail and has been 19 

proposed to serve as channel for the passage of the tail tube/spike complex that is propelled 20 

during sheath contraction [38].  21 

 22 

T6SS biogenesis: a complex biological puzzle 23 
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 Recent data using fluorescence microscopy approaches have provided insights onto 1 

the biogenesis pathway of the T6SS. The assembly proceeds inward, from the outer 2 

membrane to the cytoplasm: the membrane complex is assembled first, prior to the 3 

recruitment of the baseplate and polymerization of the cytoplasmic tail [35,38,43] (Figure 2).  4 

The TssJLM subunits assemble a large trans-envelope complex 5 

 The T6SS membrane complex is composed of the TssJ, TssL and TssM proteins [44]. 6 

TssJ is an outer membrane lipoprotein [45,46] whereas TssL and TssM are both inner 7 

membrane proteins [39,47,48]. TssL is inserted in the inner membrane via a C-terminal 8 

transmembrane helix [48] whereas TssM possesses three transmembrane helices, helices 2 9 

and 3 delimitating a 30-kDa cytoplasmic domain bearing a NTPase fold [39,47]. The third 10 

transmembrane helix of TssM is followed by a large periplasmic domain that mediates 11 

interaction with TssJ [38,46]. Purification of the enteroaggregative E. coli T6SS membrane 12 

complex defined that it has a size of 1.7 MDa and comprises ten copies of each subunit [38]. 13 

The TssJLM complex has a 5-fold symmetry, and is constituted of five dimers of 14 

heterotrimeric complexes [38]. Fluorescence microscopy analyses of GFP fusions to TssM 15 

and TssL have provided evidence that TssJ positions first and then sequentially recruits TssM 16 

and TssL (Figure 2A, blue inset; Figure 2B)[38]. In some cases, proper assembly of the T6SS 17 

membrane complex requires attachment to the peptidoglycan layer and the local degradation 18 

of the cell wall [44, 49-51].    19 

The T6SS tail is a mosaic structure that includes elements co-opted from diverse phages 20 

 The baseplate is constituted of the VgrG, TssE, –F, –G, and –K subunits. VgrG is a 21 

functional fusion between phage hub and spike proteins; TssE is homologous to a phage 22 

wedge component conserved in bacteriophages T4 (gp25), P2 (gpW) and Mu (Mup46); TssF 23 



 5 

and TssG share homologies with two phage wedge proteins: Mup47 and Mup48 of phage Mu, 1 

and gpJ and gpI of phage P2 whereas TssK is a mosaic protein with a N-terminal domain 2 

structurally and functionally similar to siphophage receptor-binding shoulder domains 3 

[28,29,34-36,40,52-56]. While they have diverse origins, the TssE, –F, –G and –K proteins 4 

have been shown to form a stable complex [34-36]. Once assembled, the T6SS baseplate 5 

complex is recruited to the TssJLM complex via multiple interactions involving the TssL and 6 

TssM cytoplasmic domains and the TssE, –G and –K proteins (Figure 2A, pink inset; Figure 7 

2B)[35,37,39,40,57]. In enteroaggregative E. coli, the recruitment of the baseplate complex 8 

also requires the TssA subunit that binds to the TssJM complex prior to the recruitment of 9 

TssL [41]. Then, the tail polymerizes onto the baseplate, with the recruitment of Hcp 10 

hexamers and TssBC strands at the distal end of the growing structure (Figure 11 

2)[30,35,43,58,59]. It has been proposed that the assembly of the inner tube is coordinated 12 

with that of the sheath, the recruitment of an Hcp hexamer immediately preceding that of 13 

TssBC [30]. Based on biochemical and fluorescence microscopy evidence, it has been 14 

recently proposed that the EAEC TssA protein coordinates the assembly of the inner tube 15 

with that of the sheath [41]. Hence, by interacting with the membrane complex, recruiting the 16 

baseplate and coordinating tube/sheath polymerization, TssA is a central component of the 17 

EAEC T6SS.  18 

TssA-like proteins come into different flavours: baseplate component or cap protein 19 

We have proposed that the EAEC TssA protein is involved in the different stages of 20 

T6SS biogenesis but plays a major role by priming and coordinating the polymerization of the 21 

sheath with that of the inner tube and by maintaining the distal extremity of the sheath 22 

attached to the inner tube during contraction [41]. However, this role of TssA has been 23 

challenged: a recent study proposed that the Pseudomonas aeruginosa TssA1 protein is a 24 
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structural component of the baseplate per se [42]. However, while TssA has been shown to be 1 

essential for T6SS function in EAEC and other strains such as Vibrio cholerae and 2 

Agrobacterium tumefaciens [41], the P. aeruginosa TssA1 protein is dispensable for T6SS 3 

function [42], suggesting that these two proteins play distinct roles. Worth noticing, while the 4 

EAEC TssA and P. aeruginosa TssA1 proteins share a similar N-terminal domain of 5 

unknown function (ImpA_N; PF06812), they have very distinct C-terminal extensions. The 6 

TssA C-terminal domain (VasJ domain, PF16989) is structurally arranged as a hexaflexagon 7 

[41] whereas the TssA1 C-terminal domain shares secondary structure homologies with gp6, 8 

a subunit of the T4 phage baseplate (Figure 3A) [42]. In addition these two proteins have 9 

distinct partners (Table 1)[41,42]. While TssA interacts with the different T6SS sub-10 

complexes, TssA1 interacts with baseplate and tube/sheath components and is predicted to be 11 

at the interface between the two sub-complexes (Figure 3B) [42]. Hence, TssA and TssA1 12 

present different C-terminal extensions, do not share functional properties and should not be 13 

confused. Interestingly, a third class of TssA-like proteins, comprising a N-terminal ImpA 14 

domain with a distinct C-terminal extension, is encoded within a limited number of T6SS 15 

gene clusters. The C-terminal extensions of these proteins bear a hydrophobic region that may 16 

serve as membrane anchor and a domain of unknown function (VasL, PF12486) (Figure 3). 17 

Because this class of TssA-like proteins is likely to be an accessory component of the T6SS, 18 

we named it TagA (Type VI secretion accessory gene with ImpA domain). We will focus this 19 

discussion on the EAEC T6SS, and more specifically on the role of TssA.  20 

 21 

TssA participates to the different T6SS assembly stages 22 

We have reported that TssA binds to the TssJM complex, prior to TssL recruitment and 23 

polymerization to form the trans-envelope channel. TssA then binds to the baseplate and 24 



 7 

coordinates the assembly of the inner tube with that of the sheath. The structure of the 1 

dodecameric TssA complex showed that it has a 6-arm starfish structure. The central core has 2 

an hexaflexagon structure, comprising 6 triangles connected at the periphery by interactions 3 

between two α-helices from two adjacent monomers. Protein-protein interaction studies have 4 

provided evidence that the central core interacts with Hcp hexamers whereas the arms interact 5 

with the sheath. Interestingly, molecular modeling experiments showed that TssA can dock to 6 

the sheath under the extended conformation but not to the contracted sheath [41]. We thus 7 

proposed that by binding to the rigid inner tube via the central core, the TssA arms participate 8 

to maintaining the sheath under the extended, metastable, conformation [41] (Figure 2B). The 9 

role of TssA at each stage of the T6SS biogenesis pathway is discussed below. 10 

TssA binds to the TssJLM membrane complex 11 

 The first partner of TssA is the membrane complex. Pull-down and fluorescence 12 

microscopy experiments have shown that TssA binds the TssJM complex, prior to the 13 

recruitment of TssL [41]. Two questions arise from these observations: how TssA interacts 14 

with the membrane proteins? How can we reconcile the symmetry mismatch between the 5-15 

fold symmetry TssJLM complex and the 6-fold symmetry TssA complex? 16 

TssA interaction with TssJLM proteins. The assembly of the TssJLM membrane complex 17 

starts with the positioning of the TssJ outer membrane lipoprotein and the recruitment of 18 

TssM. The order of the last two steps, i.e., recruitment of TssL and polymerization to form the 19 

trans-envelope channel, remains unknown [38]. TssA is recruited to the TssJM complex. 20 

However, protein-protein interaction studies did not report contacts between TssA and the 21 

cytoplasmic loop connecting TssM helices 2 and 3 [41]. One may hypothesize that (i) TssA 22 

interacts to the cytoplasmic N-terminal 15-residue segment of TssM, (ii) TssA binding 23 

requires a combination of the cytoplasmic loop and N-terminal segment, (iii) due to the lack 24 
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of constraints imposed by the transmembrane helices, the isolated TssM cytoplasmic loop is 1 

not in the proper conformation, or (iv) TssJ binding to TssM induces a conformational change 2 

in the TssM cytoplasmic loop. 3 

TssJLM-TssA symmetry mismatch. The TssJ, –L and –M were overproduced and the 4 

TssJLM complex purified from E. coli K-12 cells. Negative strain electron microscopy 5 

analyses further demonstrated that the TssJLM complex has a 5-fold symmetry (C5) [38]. By 6 

contrast, TssA has a 6-fold symmetry (D6) [41]. How two objects with different symmetry 7 

can accommodate [60]? Interestingly, it is well known in the phage field that symmetry 8 

mismatches exist between the pentagonal head vertex and the dodecameric portal/connector 9 

[61-63]. This symmetry mismatch has been proposed to be important for DNA packaging into 10 

the head [61,62,64]. A similar situation may take place in the case of the T6SS membrane and 11 

TssA/baseplate complexes. However, trying to dock the TssA electron microscopy structure 12 

to the cytoplasmic part of the TssJLM complex using Chimera [65] did not generate a 13 

reasonable model. Alternatively, TssA being recruited prior to TssL in vivo, one may imagine 14 

that TssA acts as a chaperone and by controlling the polymerization of the TssJLM complex 15 

forces the symmetrization to a 6-fold symmetry. To gain further insights onto TssJLM-A 16 

complex formation, we generated a 6-fold symmetry model of the TssJLM complex. One fifth 17 

of the TssJLM electron microscopy map was isolated and a 6-fold symmetry was applied to 18 

this fragment (Figure 4). Interestingly, docking of TssA to the 6-fold symmetry TssJLM 19 

complex resulted in a reasonable fit of the TssA arms between the densities assigned to the 20 

TssL dimers (Figure 4). In addition, when comparing this model to the shape of the particles 21 

obtained for TssJLM alone and for the co-expressed TssJLM and TssA complex, we observed 22 

that the shape of the TssJLM-A particle fits well the generated 6-fold symmetry model 23 

(Figure 5). Specifically, the "emerged" part of TssA in the model is comparable to the width 24 

and thickness of its counterpart in the particles (Figure 5). Thus, it remains possible that TssA 25 



 9 

serves as a chaperone that would bind to TssJLM and stabilize a dodecamer with a 6-fold 1 

symmetry instead of the thermodynamically more stable isolated TssJLM decamer with a 5-2 

fold symmetry. Purification and imaging the TssJLM-A complexes, or imaging the TssJLM 3 

complex directly in enteroaggregative E. coli cells may provide critical information regarding 4 

the native symmetry of the T6SS membrane complex. 5 

TssA binds to the baseplate 6 

TssA does not remain attached to the TssJLM complex but rather binds the baseplate 7 

and then is positioned at the distal end of the tail during tail extension [41]. The first step of 8 

TssA migration is the replacement of TssA by the baseplate at the TssJLM cytoplasmic base. 9 

It has been proposed that the baseplate assembles in the cytosol, independently of the 10 

membrane complex but that it is stabilized when docked to the TssJLM complex [35]. One 11 

may hypothesize that the affinity of the TssJLM complex for the baseplate is higher than its 12 

affinity for TssA. Hence, the assembled baseplate should progressively displace the TssJLM-13 

TssA complex towards a TssJLM-baseplate complex.  14 

 15 

TssA coordinates assembly of the tail tube and tail sheath 16 

In absence of TssA, the Hcp hexamers do not properly stack on each other [35] and 17 

the sheath does not extend [41]. In addition, TssA remains at the distal end of the sheath 18 

during the extension process [41]. Based on these observations, we have suggested that TssA 19 

coordinates the assembly of the inner tube with that of the sheath [41]. This model agrees 20 

with recent data that showed that the sheath is growing by the distal end, i.e., sheath subunits 21 

are incorporated at the tip of the tubular structure [59]. Different models could be proposed on 22 

how TssA incorporates new subunits (Figure 6). In the "exchange" model (Figure 6A), a new 23 
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TssA complex, loaded with the Hcp-TssBC complex is exchanged with the TssA located at 1 

the distal end of the growing tail. A new row is then added. The "flip" model (Figure 6B) 2 

takes into account the D6 symmetry of the TssA complex, which exhibits two identical sides 3 

with identical surfaces. Once bound to the distal end of the growing tail, the free side of the 4 

TssA complex recruits an Hcp-TssBC complex and then flips allowing the incorporation of a 5 

new row. In the "cap" model (Figure 6C), the triangles of the central core of TssA are 6 

displaced to open a lumen allowing the passage of an Hcp hexamer. Then the TssA arms 7 

recruit, position and polymerize TssBC subunits, such as the flagellar cap does with flagellins 8 

[66,67]. Although movements of the TssA central core triangles have not been evidenced, we 9 

favor the "cap" model as the arms will maintain the sheath under the extended conformation, 10 

whereas the "exchange" and "flip" models imply dissociation of TssA from the distal end of 11 

the tail. 12 

 13 

TssA maintains the tail sheath under an extended conformation 14 

 How the sheath is maintained under the extended, high-energy, conformation? This 15 

question remains unsolved. We propose that TssA plays a key role in this process. The TssBC 16 

sheath is attached to the baseplate and to the TssA arms [41]. Via its central core, TssA is 17 

bound to the Hcp tube, which represents a rigid structure between the baseplate and TssA. 18 

Thus the length of the inner tube controls the stretching of the sheath. In this model, all the 19 

energy of sheath extension is hold by the TssA arms, which is unlikely. It is highly probable 20 

that other forces are required to maintain the sheath under the extended conformation. 21 

Because polymerization of inner tube hexamers immediately precedes polymerization of 22 

sheath row, it is suggested that the inner tube serves as template for sheath polymerization 23 

[30]. A similar assembly process has been proposed for the bacteriophage T4 tail [68]. 24 
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Interestingly, the external surface of Hcp hexamers comprises charged residues and we may 1 

hypothesize that charge interactions between the outer surface of the tube and the inner 2 

surface of the sheath also contribute to the stabilization of the sheath in the extended 3 

conformation. Such a charge complementarity between tube and sheath exists in the case of 4 

R-pyocins [69]. 5 

TssA remains attached to the sheath distal end during contraction 6 

In contractile bacteriophages, the contraction of the sheath is triggered by structural 7 

transitions in the baseplate that are induced by the attachment of the long fibers to the prey 8 

cell surface. Thus, sheath contraction is initiated at the baseplate level. If the mechanism is 9 

similar in the case of the T6SS, TssA is in contact with the last row of sheath that contracts. 10 

Docking simulations have shown that the TssA arms fit well with the sheath modeled in the 11 

extended conformation (Figure 7) whereas cannot accommodate to the contracted sheath [41]. 12 

This modeling is in agreement with the observation that TssA is no co-purified with 13 

contracted sheath in Vibrio cholerae [31,70]. By connecting the last sheath row to the tube, 14 

TssA prevents energy dissipation during sheath contraction and allows tube propeling, before 15 

being released. 16 

 17 

Conclusions and outlook 18 

 Recent studies have highlighted that TssA is necessary at various stages of the T6SS 19 

assembly pathway: TssA binds the membrane complex and may have a chaperone role to 20 

control its assembly. It is involved in the recruitment of the baseplate and then primes and 21 

coordinates tail tube/sheath extension. TssA also participates to maintaining the sheath under 22 

the extended conformation. Finally, by connecting the distal end of the tube with the sheath 23 
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until the last row of sheath contracts, TssA permits proper propulsion of the tube/spike. Many 1 

of these aspects remain hypothetical but further experiments will likely provide details on the 2 

role of TssA during T6SS biogenesis. Purification and high-resolution imaging of the 3 

TssJLM-A complex will provide insights onto TssA docking to the MC and on the potential 4 

symmetry mismatch. A better characterization of different TssA, TssA1 and TagA proteins 5 

will help to better understand their contribution to T6SS biogenesis as well as to highlight 6 

their functional and structural differences. Finally high-resolution fluorescence microscopy 7 

technologies will provide information on how the T6SS tail assembles and whether TssA 8 

remains associated with the sheath during contraction. 9 
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 21 

Legend to Figures 22 

Figure 1. Type VI secretion system: genes and general architecture. Schematic 23 

representations of the genes involved in the assembly of the T6SS (A) and the T6SS 24 

architecture (B). The genes and their corresponding proteins are indicated with the same 25 

colour code, and are categorized in sub-complexes (membrane complex, tail comprising the 26 

baseplate complex, spike, tube, sheath and cap). Except for Hcp, VgrG, PAAR and ClpV, 27 

T6SS genes are indicated with the 1-letter Tss nomenclature (e.g., L corresponds to tssL). 28 

(OM, outer membrane; PG, peptidoglycan; IM, inner membrane; cyto, cytoplasm). 29 

Figure 2. The Type VI secretion biogenesis pathway. (A) Schematic representation of the 30 

Type VI secretion assembly pathway. The arrows indicate protein recruitments. T6SS 31 
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biogenesis starts with the assembly of the membrane complex (MC; blue frame) and the 1 

recruitment of the baseplate (BP) that has been proposed to be assembled independently (pink 2 

frame), prior to polymerization of the tail tube/sheath, contraction and recycling of the sheath. 3 

The TssA (indicated in red) protein is recruited to the TssJM complex and primes tail 4 

tube/sheath polymerization and coordinates assembly of the sheath with that of the tube. (B) 5 

Schematic representation of the T6SS biogenesis pathway highlighting the role of TssA (red). 6 

TssA is recruited to the TssJM complex, prior to TssL and is required for recruitment of the 7 

baseplate. TssA coordinates tail tube/sheath assembly and is released at the end of the sheath 8 

contraction. Note that in this scheme, contraction of the sheath is initiated at the baseplate, a 9 

hypothesis that is based on data on contractile bacteriophages. 10 

Figure 3. Architecture and localization of TssA-like proteins. (A) Architecture of the three 11 

classes of TssA-like proteins, named TssA, TssA1 and TagA. The conserved ImpA_N 12 

domain (pfam accession PF06812) is shown in red whereas the C-terminal extensions are 13 

shown in colour. Interesting features are indicated (T6SS_VasJ, domain of unknown function 14 

[pfam accession PF16989] [blue]; gp6, bacteriophage gp6 homology region [orange]; HR, 15 

hydrophobic region [grey]; VasL, domain of unknown function [pfam accession PF12486] 16 

[green]). (B) Localizations of the TssA (left), TssA1 (middle) and TagA (right) proteins. The 17 

TssA-like proteins are shown in red with their suggested localizations. No information is 18 

available for the TagA protein. 19 

Figure 4. 6-fold symmetrization of the TssJLM complex and TssA docking simulations. 20 

Side (A), Bottom (B) and cut-away (C, D) views of the docking simulations of the TssA 21 

dodecamer electron microscopy structure (purple [41], EMD-3982) to the base of the 6-fold 22 

symmetrized TssJLM complex (grey). The positions of the C and D cut sections are indicated 23 

in panel B. In panel (B), the localization of one TssL dimer density [38,71] is indicated. 24 

Figure 5. Comparison of the 6-fold symmetry TssJLM-TssA model with a electron 25 

microscopy particle. The model of the 6-fold symmetrized TssJLM-TssA complex (A) is 26 

compared to a TssJLM-TssA (B, C [41]) and TssJLM (D, E [38]) particles. Scale bars are 10 27 

nm. 28 

Figure 6. Schematic models for TssA-mediated recruitment and polymerization of 29 

tube/sheath subunits. Exchange (A), flip (B) and cap (C) models proposed to explain the 30 

mode of action of TssA (red) during tail tube/sheath (blue) extension. A new TssA molecule 31 
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is indicated in orange whereas the newly incorporated tube/sheath building block is indicated 1 

in green. 2 

Figure 7. Simulation modelling of TssA bound to the extended sheath. Side view of the 3 

docking simulation of the TssA dodecamer electron microscopy structure (purple) bound to 4 

the distal end of the T6SS sheath modelled in the extended conformation (grey). 5 
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