E. Cascales, Colicin Biology, Microbiology and Molecular Biology Reviews, vol.71, issue.1, pp.158-229, 2007.
DOI : 10.1128/MMBR.00036-06

URL : http://mmbr.asm.org/content/71/1/158.full.pdf

S. Rebuffat, Microcins in action: amazing defence strategies of Enterobacteria, Biochemical Society Transactions, vol.177, issue.6, p.316, 2012.
DOI : 10.1002/cbic.201200174

C. Van-kraaij, Lantibiotics: biosynthesis, mode of action and applications, Natural Product Reports, vol.16, issue.5, pp.575-87, 0318.
DOI : 10.1039/a804531c

D. Scholl, Phage Tail???Like Bacteriocins, Annual Review of Virology, vol.4, issue.1, pp.453-467, 2017.
DOI : 10.1146/annurev-virology-101416-041632

Y. C. Kim, Colicin import into E. coli cells: A model system for insights into the import mechanisms of bacteriocins, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.8, pp.1717-1748, 2014.
DOI : 10.1016/j.bbamcr.2014.04.010

C. S. Hayes, Mechanisms and biological roles of contact-dependent growth 323 inhibition systems, Cold Spring Harb Perspect Med, vol.4, issue.2, 2014.

E. S. Danka, Are CDI Systems Multicolored, Facultative, Helping Greenbeards?, Trends in Microbiology, vol.25, issue.5, pp.391-401, 2017.
DOI : 10.1016/j.tim.2017.02.008

J. Guerin, Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions, Frontiers in Cellular and Infection Microbiology, vol.58, p.329, 2017.
DOI : 10.1093/nar/gkr036

Z. C. Ruhe, Receptor polymorphism restricts contact-dependent growth 330 inhibition to members of the same species, MBio, vol.4, issue.4, 2013.

J. L. Willett, Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways, Proceedings of the National Academy of Sciences, vol.269, issue.7, pp.11341-11347, 2015.
DOI : 10.1128/JB.00621-10

URL : http://www.pnas.org/content/112/36/11341.full.pdf

M. Kudryashev, Structure of the Type VI Secretion System Contractile Sheath, Cell, vol.160, issue.5, pp.952-62, 2015.
DOI : 10.1016/j.cell.2015.01.037

M. Basler, Type VI secretion system: secretion by a contractile nanomachine, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.55, issue.1679, p.336, 2015.
DOI : 10.1128/JB.188.6.2254-2261.2006

URL : http://rstb.royalsocietypublishing.org/content/royptb/370/1679/20150021.full.pdf

N. Kapitein and A. Mogk, Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition, Current Opinion in Microbiology, vol.16, issue.1, pp.52-60, 2013.
DOI : 10.1016/j.mib.2012.11.009

F. R. Cianfanelli, Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon, Trends in Microbiology, vol.24, issue.1, pp.51-62, 2016.
DOI : 10.1016/j.tim.2015.10.005

M. Basler, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.1, issue.7388, pp.182-188, 2012.
DOI : 10.1038/nprot.2006.432

URL : http://europepmc.org/articles/pmc3527127?pdf=render

B. T. Ho, A View to a Kill: The Bacterial Type VI Secretion System, Cell Host & Microbe, vol.15, issue.1, pp.9-21, 2014.
DOI : 10.1016/j.chom.2013.11.008

M. Brackmann, Using Force to Punch Holes: Mechanics of Contractile Nanomachines, Trends in Cell Biology, vol.27, issue.9, pp.623-632, 2017.
DOI : 10.1016/j.tcb.2017.05.003

M. Basler and J. J. Mekalanos, Type 6 Secretion Dynamics Within and Between Bacterial Cells, Science, vol.102, issue.22, p.815, 2012.
DOI : 10.1073/pnas.0503005102

URL : http://europepmc.org/articles/pmc3557511?pdf=render

M. Basler, Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions, Cell, vol.152, issue.4, pp.884-94, 2013.
DOI : 10.1016/j.cell.2013.01.042

Y. R. Brunet, Imaging Type VI Secretion-Mediated Bacterial Killing, Cell Reports, vol.3, issue.1, pp.36-41, 2013.
DOI : 10.1016/j.celrep.2012.11.027

URL : https://hal.archives-ouvertes.fr/hal-01458227

M. Leroux, Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword, Proceedings of the National Academy of Sciences, vol.194, issue.18, pp.19804-19813, 2012.
DOI : 10.1128/JB.00932-12

J. D. Mougous, Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa, Nature Cell Biology, vol.55, issue.7, pp.797-803, 2007.
DOI : 10.1371/journal.ppat.0020030

J. M. Silverman, Structure and Regulation of the Type VI Secretion System, Annual Review of Microbiology, vol.66, issue.1, p.359, 2012.
DOI : 10.1146/annurev-micro-121809-151619

URL : https://hal.archives-ouvertes.fr/hal-01458240

J. M. Silverman, Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation, Molecular Microbiology, vol.193, issue.5, pp.1277-90, 2011.
DOI : 10.1128/JB.00268-11

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2011.07889.x/pdf

M. Lazzaro, A transcriptional regulatory mechanism finely tunes the firing of 363, 2017.

M. Leroux, Kin cell lysis is a danger signal that activates antibacterial 365 pathways of Pseudomonas aeruginosa, 2015.

M. Leroux, Bacterial danger sensing, Journal of Molecular Biology, vol.427, issue.23, pp.3744-53, 2015.
DOI : 10.1016/j.jmb.2015.09.018

A. B. Russell, Type VI secretion delivers bacteriolytic effectors to target cells, Nature, vol.124, issue.7356, pp.343-350, 2011.
DOI : 10.1111/j.1574-6968.1994.tb07270.x

E. Durand, VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors, Trends in Microbiology, vol.22, issue.9, pp.498-507, 2014.
DOI : 10.1016/j.tim.2014.06.004

URL : https://hal.archives-ouvertes.fr/hal-01458195

A. Diniz and J. , Molecular weaponry: diverse effectors delivered by the 372, 2015.

A. B. Russell, A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism, Cell Host & Microbe, vol.16, issue.2, pp.227-263, 2014.
DOI : 10.1016/j.chom.2014.07.007

A. B. Russell, A Widespread Bacterial Type VI Secretion Effector Superfamily Identified Using a Heuristic Approach, Cell Host & Microbe, vol.11, issue.5, pp.538-587, 2012.
DOI : 10.1016/j.chom.2012.04.007

A. B. Russell, Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors, Nature, vol.277, issue.7446, pp.508-520, 2013.
DOI : 10.1074/jbc.M205375200

URL : http://europepmc.org/articles/pmc3652678?pdf=render

S. T. Miyata, ABSTRACT, Infection and Immunity, vol.79, issue.7, pp.2941-2950, 2011.
DOI : 10.1128/IAI.01266-10

S. Pukatzki, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proceedings of the National Academy of Sciences, vol.22, issue.22, pp.15508-383, 2007.
DOI : 10.1093/nar/22.22.4673

E. Durand, Crystal structure of the VgrG1 actin cross-linking, p.385, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458244

G. Suarez, A type VI secretion system effector protein, VgrG1, p.387, 2010.

F. Jiang, A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells, Cell Host & Microbe, vol.15, issue.5, pp.600-610, 2014.
DOI : 10.1016/j.chom.2014.04.010

F. Jiang, The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress, Cell Reports, vol.16, issue.6, pp.1502-1511, 2016.
DOI : 10.1016/j.celrep.2016.07.012

T. G. Sana, Internalization of Pseudomonas aeruginosa strain PAO1 into 395 epithelial cells is promoted by interaction of a T6SS effector with the microtubule network, MBio, vol.396, issue.63, p.712, 2015.

D. F. Aubert, A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation, Cell Host & Microbe, vol.19, issue.5, pp.664-74, 2016.
DOI : 10.1016/j.chom.2016.04.004

S. Bleves, Game of Trans-Kingdom Effectors, Trends in Microbiology, vol.24, issue.10, pp.773-777, 2016.
DOI : 10.1016/j.tim.2016.08.002

URL : https://hal.archives-ouvertes.fr/hal-01766104

A. Diniz, J. Coulthurst, and S. J. , ABSTRACT, Journal of Bacteriology, vol.197, issue.14, pp.2350-60, 2015.
DOI : 10.1128/JB.00199-15

A. B. Russell, Type VI secretion system effectors: poisons with a purpose, Nature Reviews Microbiology, vol.8, issue.2, pp.137-185, 2014.
DOI : 10.1371/journal.pone.0057609

M. A. Marahiel, Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis, Journal of Peptide Science, vol.8, issue.12, pp.799-807, 2009.
DOI : 10.1002/psc.1183

M. A. Marahiel and L. O. Essen, Chapter 13 Nonribosomal Peptide Synthetases, Methods Enzymol, vol.458, pp.337-51, 2009.
DOI : 10.1016/S0076-6879(09)04813-7

H. Mathur, The Sactibiotic Subclass of Bacteriocins: An Update, Current Protein & Peptide Science, vol.16, issue.6, p.410, 2015.
DOI : 10.2174/1389203716666150515124831

Y. Michel-briand and C. Baysse, The pyocins of Pseudomonas aeruginosa, Biochimie, vol.84, issue.5-6, pp.5-6, 2002.
DOI : 10.1016/S0300-9084(02)01422-0

P. F. Sarris, A phage tail-derived element with wide distribution among both 414 prokaryotic domains: a comparative genomic and phylogenetic study, Genome Biol Evol, vol.6, issue.7, pp.415-1739, 2014.

D. Bock, In situ architecture, function, and evolution of a contractile injection system, Science, vol.56, issue.6352, pp.713-717, 2017.
DOI : 10.15252/embj.201694024

T. J. Wiles, Host gut motility promotes competitive exclusion within a model 419 intestinal microbiota Context-dependent competition in a model gut bacterial 421 community, PLoS Biol PLoS One, vol.14, issue.86, p.67210, 2013.

G. A. Weiss and T. Hennet, Mechanisms and consequences of intestinal dysbiosis, Cellular and Molecular Life Sciences, vol.23, issue.9, pp.2959-2977, 2017.
DOI : 10.1093/bioinformatics/btm050

T. G. Sana, T6SS: The bacterial "fight club" in the host gut, PLOS Pathogens, vol.534, issue.7609, pp.425-1006325, 2017.
DOI : 10.1371/journal.ppat.1006325.g002

A. G. Wexler, Human symbionts inject and neutralize antibacterial toxins to persist in the gut, Proceedings of the National Academy of Sciences, vol.15, issue.3, pp.3639-3683, 2016.
DOI : 10.1038/nmeth.1701

M. J. Coyne, Type VI secretion systems of human gut Bacteroidales segregate 429 into three genetic architectures, two of which are contained on mobile genetic elements, p.431, 2016.

M. J. Coyne, Evidence of extensive DNA transfer between bacteroidales 432 species within the human gut, MBio, vol.5, issue.3, pp.1305-1319, 2014.

D. L. Macintyre, The Vibrio cholerae type VI secretion system displays antimicrobial properties, Proceedings of the National Academy of Sciences, vol.22, issue.12, pp.19520-19524, 2010.
DOI : 10.1038/nbt1037

E. Gueguen and E. Cascales, ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.1, pp.32-40, 2013.
DOI : 10.1128/AEM.02504-12

C. S. Bernard, Nooks and Crannies in Type VI Secretion Regulation, Journal of Bacteriology, vol.192, issue.15, pp.192-3850, 2010.
DOI : 10.1128/JB.00370-10

V. Bachmann, Bile salts modulate the mucin-activated type VI secretion 441 system of pandemic Vibrio cholerae Salmonella Typhimurium utilizes a T6SS-mediated antibacterial 443 weapon to establish in the host gut, PLoS Negl Trop Dis Proc Natl Acad Sci, vol.9, issue.11334, pp.4031-442, 2015.

Y. R. Brunet, An epigenetic switch involving overlapping fur and DNA 445 methylation optimizes expression of a type VI secretion gene cluster, PLoS Genet, vol.7, issue.7, pp.446-1002205, 2011.

A. T. Cheng, Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System, PLOS Pathogens, vol.337, issue.6091, pp.1004933-449, 2015.
DOI : 10.1371/journal.ppat.1004933.s008

M. C. Anderson, Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy, Cell Host & Microbe, vol.21, issue.6, pp.769-776, 2017.
DOI : 10.1016/j.chom.2017.05.004

S. L. Logan, The Vibrio cholerae type VI secretions system can modulate host 454 intestinal mechanics to displace commensal gut bacteria. Biorxiv doi: 455 https, 2017.

Y. Fu, Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host, Cell Host & Microbe, vol.14, issue.6, pp.652-63, 2013.
DOI : 10.1016/j.chom.2013.11.001

Y. Fu, Tracking Vibrio cholerae cell-cell interactions during infection reveals 459 bacterial population dynamics within intestinal microenvironments, Cell Host Microbe, vol.23, issue.8, pp.1-460, 2018.
DOI : 10.1016/j.chom.2017.12.006

W. Zhao, virulence, Science, vol.15, issue.6372, pp.210-213, 2018.
DOI : 10.1038/nmeth.1923

URL : https://hal.archives-ouvertes.fr/hal-01195600

M. Si, Manganese scavenging and oxidative stress response mediated by type 464 VI secretion system in Burkholderia thailandensis, Proc Natl Acad Sci U S A, vol.114, issue.11, pp.465-2233, 2017.

M. Si, The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition, Cell Reports, vol.20, issue.4, pp.949-959, 2017.
DOI : 10.1016/j.celrep.2017.06.081

B. Wan, Type VI secretion system contributes to Enterohemorrhagic 469 Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS), 2017.
DOI : 10.1371/journal.ppat.1006246

URL : https://doi.org/10.1371/journal.ppat.1006246

O. Gillor, Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract, BMC Microbiology, vol.9, issue.1, p.165, 2009.
DOI : 10.1186/1471-2180-9-165

H. Majeed, Competitive interactions in Escherichia coli populations: the role of bacteriocins, The ISME Journal, vol.102, issue.1, pp.71-81, 2011.
DOI : 10.1098/rspb.2007.1461

R. D. Joerger, Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages, Poultry Science, vol.82, issue.4, pp.640-647, 2003.
DOI : 10.1093/ps/82.4.640

URL : https://academic.oup.com/ps/article-pdf/82/4/640/4332996/poultrysci82-0640.pdf

B. C. Kirkup and . Jr, Bacteriocins as Oral and Gastrointestinal Antibiotics: Theoretical Considerations, Applied Research, and Practical Applications, Current Medicinal Chemistry, vol.13, issue.27, pp.3335-479, 2006.
DOI : 10.2174/092986706778773068

P. D. Cotter, Bacteriocins ??? a viable alternative to antibiotics?, Nature Reviews Microbiology, vol.76, issue.2, pp.95-105, 2013.
DOI : 10.1128/AEM.01061-09

V. Ahmad, Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation, International Journal of Antimicrobial Agents, vol.49, issue.1, pp.1-11, 2017.
DOI : 10.1016/j.ijantimicag.2016.08.016

D. Scholl, D. W. Martin, and . Jr, Antibacterial Efficacy of R-Type Pyocins towards Pseudomonas aeruginosa in a Murine Peritonitis Model, Antimicrobial Agents and Chemotherapy, vol.52, issue.5, pp.1647-52, 2008.
DOI : 10.1128/AAC.01479-07

M. E. Hibbing, Bacterial competition: surviving and thriving in the microbial jungle, Nature Reviews Microbiology, vol.44, issue.1, pp.15-25, 2010.
DOI : 10.1128/jb.177.24.7155-7163.1995

N. Kamada, Role of the gut microbiota in immunity and inflammatory disease, Nature Reviews Immunology, vol.109, issue.5, pp.321-356, 2013.
DOI : 10.1073/pnas.1219482110

M. Sassone-corsi, Microcins mediate competition among Enterobacteriaceae in the inflamed gut, Nature, vol.7, issue.7632, pp.280-283, 2016.
DOI : 10.1038/nmeth.f.303

M. C. Rea, Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile, Proceedings of the National Academy of Sciences, vol.43, issue.1, pp.9352-9359, 2010.
DOI : 10.1021/bi0359527

M. Chatzidaki-livanis, Bacteroides fragilis type VI secretion systems use 497 novel effector and immunity proteins to antagonize human gut Bacteroidales species, Proc, vol.498, 2016.

K. G. Roelofs, Bacteroidales secreted antimicrobial proteins target surface 500 molecules necessary for gut colonization and mediate competition in vivo, MBio, vol.7, issue.4, pp.501-01055, 2016.

M. Chatzidaki-livanis, Gut symbiont Bacteroides fragilis secretes a 503 eukaryotic-like ubiquitin protein that mediates intraspecies antagonism, MBio, vol.8, issue.6, pp.504-01902, 2017.
DOI : 10.1128/mbio.01902-17

URL : http://mbio.asm.org/content/8/6/e01902-17.full.pdf

A. J. Verster, The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition, Cell Host & Microbe, vol.22, issue.3, pp.411-419, 2017.
DOI : 10.1016/j.chom.2017.08.010

A. L. Hecht, Strain competition restricts colonization of an enteric pathogen and prevents colitis, EMBO reports, vol.17, issue.9, pp.1281-91, 2016.
DOI : 10.15252/embr.201642282

D. B. Borenstein, Established Microbial Colonies Can Survive Type VI Secretion Assault, PLOS Computational Biology, vol.21, issue.1, pp.1004520-511, 2015.
DOI : 10.1371/journal.pcbi.1004520.s022

URL : http://doi.org/10.1371/journal.pcbi.1004520

B. C. Kirkup and M. A. Riley, Antibiotic-mediated antagonism leads to a bacterial game of rock???paper???scissors in vivo, Nature, vol.428, issue.6981, pp.412-416, 2004.
DOI : 10.1038/nature02429

R. F. Inglis, Presence of a loner strain maintains cooperation and diversity in 514 well-mixed bacterial communities, Proc Biol Sci, vol.283, 1822.

B. Chassaing, AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition, Gut, vol.53, issue.Suppl 1, pp.1069-80, 2014.
DOI : 10.1136/gut.2003.025403

J. M. Shin, Biomedical applications of nisin, Journal of Applied Microbiology, vol.5, issue.s1, pp.1449-65, 2016.
DOI : 10.1371/journal.pone.0009321

P. Lukacik, Structural engineering of a phage lysin that targets Gram-negative pathogens, Proceedings of the National Academy of Sciences, vol.181, issue.1, pp.9857-62, 2012.
DOI : 10.1086/315217

D. Scholl, An engineered R-type pyocin is a highly specific and sensitive 524 bactericidal agent for the food-borne pathogen Escherichia coli O157:H7, Antimicrob Agents, vol.525, issue.7, pp.53-3074, 2009.

J. M. Ritchie, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.55, issue.12, pp.5469-74, 0528.
DOI : 10.1128/AAC.05031-11

D. Gebhart, A modified R-type bacteriocin specifically targeting 530 Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity, MBio, vol.531, issue.62, pp.2368-2382, 2015.