]. C. Zeng, S. C. Erwin, L. C. Feldman, A. P. Li, R. Jin et al., Epitaxial growth and magnetic properties of Mn5Ge3/Ge and Mn5Ge3Cx/Ge heterostructures for spintronic applications Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection, Thin Solid Films, Löhneysen, Strongly enhanced Curie temperature in carbon-doped Mn5Ge3 films, pp.5002-5004, 1016.

I. Slipukhina, E. Arras, P. Mavropoulos, and P. Pochet, Simulation of the enhanced Curie temperature in Mn5Ge3Cx compounds, Applied Physics Letters, vol.94, issue.19, 2009.
DOI : 10.1088/0953-8984/18/5/020

A. Spiesser, I. Slipukhina, E. Arras, V. L. Thanh, L. Michez et al., Control of magnetic properties of epitaxial Mn5Ge3Cx films induced by carbon doping Schottky contacts tuned by an n-type ultra-shallow doping layer, doi:10.1103/PhysRevB.84.165203. [7] Inverse Magnetoresistance in Polymer Spin Valves, pp.1-7, 2011.

M. Galbiati, S. Tatay, A. Dediu, R. Mattana, and P. Seneor, Spinterface: Crafting spintronics at the molecular scale, MRS Bulletin, vol.65, issue.07, pp.602-607, 2014.
DOI : 10.1021/nl301802e

M. Cinchetti, V. A. Dediu, and L. E. Hueso, Activating the molecular spinterface, Nature Materials, vol.9, issue.5, pp.507-515, 2017.
DOI : 10.1038/nnano.2014.284

J. S. Moodera, B. Koopmans, and P. M. Oppeneer, On the path toward organic spintronics, MRS Bulletin, vol.39, issue.07, 2014.
DOI : 10.1002/adfm.201102297

T. L. Tran, D. Çakir, P. K. Wong, A. B. Preobrajenski, G. Brocks et al., Interfaces for Organic Spintronics, ACS Applied Materials & Interfaces, vol.5, issue.3, pp.837-84110, 1021.
DOI : 10.1021/am3024367

A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chemical Reviews, vol.96, issue.4, pp.1533-1554, 1996.
DOI : 10.1021/cr9502357

F. Schreiber, Structure and growth of self-assembling monolayers, Progress in Surface Science, vol.65, issue.5-8, pp.151-256, 2000.
DOI : 10.1016/S0079-6816(00)00024-1

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chemical Reviews, vol.105, issue.4, pp.1103-1169, 2005.
DOI : 10.1021/cr0300789

G. M. Whitesides, J. K. Kriebel, and J. C. Love, Molecular engineering of surfaces using self-assembled monolayers, Science Progress, vol.88, issue.1, pp.17-48, 2005.
DOI : 10.3184/003685005783238462

X. Wang, H. Wang, D. Pan, T. Keiper, L. Li et al., Robust Manipulation of Magnetism in Dilute Magnetic Semiconductor (Ga,Mn)As by Organic Molecules, Advanced Materials, vol.111, issue.48, pp.8043-8050, 2015.
DOI : 10.1103/PhysRevLett.111.027203

T. C. Kreutz, E. G. Gwinn, R. Artzi, R. Naaman, H. Pizem et al., Modification of ferromagnetism in semiconductors by molecular monolayers, Applied Physics Letters, vol.83, issue.20, pp.4211-4213, 2003.
DOI : 10.1103/PhysRevB.63.054418

K. Raman, A. M. Kamerbeek, A. Mukherjee, N. Atodiresei, K. Tamal et al., Interface-engineered templates for molecular spin memory devices, Nature, vol.4, issue.7433, pp.509-51310, 1038.
DOI : 10.1088/0953-8984/4/44/004

Q. Cai, B. Xu, L. Ye, Z. Di, S. Huang et al., 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation, Applied Surface Science, vol.353, pp.890-901, 2015.
DOI : 10.1016/j.apsusc.2015.06.174

P. Ardalan, C. B. Musgrave, and S. F. Bent, Formation of Alkanethiolate Self-Assembled Monolayers at Halide-Terminated Ge Surfaces, Langmuir, vol.25, issue.4, pp.2013-2025, 2009.
DOI : 10.1021/la803468e

P. Ardalan, Y. Sun, P. Pianetta, C. B. Musgrave, and S. F. Bent, Reaction Mechanism, Bonding, and Thermal Stability of 1-Alkanethiols Self-Assembled on Halogenated Ge Surfaces, Langmuir, vol.26, issue.11, pp.8419-8429, 2010.
DOI : 10.1021/la904864c

J. N. Hohman, M. Kim, H. R. Bednar, J. Lawrence, P. D. Mcclanahan et al., Simple, robust molecular self-assembly on germanium, Chemical Science, vol.66, issue.7, 2011.
DOI : 10.1063/1.113978

X. Lefevre, O. Segut, P. Jegou, S. Palacin, and B. Jousselme, Towards organic film passivation of germanium wafers using diazonium salts: Mechanism and ambient stability, Chemical Science, vol.22, issue.103, pp.1662-1671, 2012.
DOI : 10.1021/la060653e

URL : https://hal.archives-ouvertes.fr/cea-00960577

M. Petit, L. Michez, C. Dutoit, S. Bertaina, V. O. Dolocan et al., Very lowtemperature epitaxial growth of Mn5Ge3 and Mn5Ge3C0.2 films on Ge(111) using molecular beam epitaxy, Thin Solid Films, pp.427-432, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162158

D. Schmeisser, R. D. Schnell, A. Bogen, F. J. Himpsel, D. Rieger et al., Surface oxidation states of germanium, Surface Science, vol.172, issue.2, pp.455-465, 1986.
DOI : 10.1016/0039-6028(86)90767-3

J. C. Carver, G. K. Schweitzer, and T. A. Carlson, Use of XRay Photoelectron Spectroscopy to Study Bonding in Cr, J. Chem. Phys, vol.57, 1972.

B. Onsia, T. Conard, S. De-gendt, M. Heyns, I. Hoflijk et al., A study of the influence of typical wet chemical treatments on the germanium wafer surface, Diffus. Defect Data. Solid State Data. Part B, Solid State Phenom, pp.27-30, 2005.

K. Prabhakaran and T. Ogino, Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study, Surface Science, vol.325, issue.3, pp.263-271, 1995.
DOI : 10.1016/0039-6028(94)00746-2

T. Hanrath and B. A. , Chemical Surface Passivation of Ge Nanowires, Journal of the American Chemical Society, vol.126, issue.47, pp.15466-15472, 2004.
DOI : 10.1021/ja0465808

G. Collins and J. D. Holmes, Chemical functionalisation of silicon and germanium nanowires, Journal of Materials Chemistry, vol.141, issue.30, 2011.
DOI : 10.1088/0031-8949/2010/T141/014016

D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, vol.13, issue.8, 1969.
DOI : 10.1002/app.1969.070130815

D. H. Kaelble, Dispersion-Polar Surface Tension Properties of Organic Solids, The Journal of Adhesion, vol.2, issue.2, pp.66-81, 1970.
DOI : 10.1002/app.1967.070111118

F. M. Fowkes, Attractives forces at interfaces, Ind, Enginnering Chem, vol.56, pp.40-52, 1964.
DOI : 10.1021/ie50660a008

E. J. Chibowski, Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis, Advances in Colloid and Interface Science, vol.113, issue.2-3, 2005.
DOI : 10.1016/j.cis.2005.01.005

F. Hejda, P. Solar, and J. , Surface Free Energy Determination by Contact Angle Measurements ? A Comparison of Various Approaches, WDS'10 Proc, Contrib. Pap, pp.25-30, 2010.

P. Miskiewicz, S. Kotarba, J. Jung, T. Marszalek, M. Mas-torrent et al., Influence of SiO2 surface energy on the performance of organic field effect transistors based on highly oriented, zone-cast layers of a tetrathiafulvalene derivative, Journal of Applied Physics, vol.2006, issue.5, pp.1-5, 2008.
DOI : 10.1002/adma.200700831

M. Dau, V. L. Thanh, L. Michez, M. Petit, T. Le et al., /Ge(111) heterostructures, New Journal of Physics, vol.14, issue.10, 103020.
DOI : 10.1088/1367-2630/14/10/103020

URL : https://hal.archives-ouvertes.fr/hal-00773485

F. Aqra and A. Ayyad, Surface energies of metals in both liquid and solid states, Applied Surface Science, vol.257, issue.15, pp.6372-6379, 2011.
DOI : 10.1016/j.apsusc.2011.01.123

S. Kulkarni, D. Puthusseri, S. Thakur, A. Banpurkar, and S. , Hausmannite Manganese oxide cathodes for supercapacitors: Surface Wettability and Electrochemical Properties, Electrochimica Acta, vol.231, pp.460-467, 2017.
DOI : 10.1016/j.electacta.2017.01.165